Abstract:
A smart phone senses audio, imagery, and/or other stimulus from a user's environment, and acts autonomously to fulfill inferred or anticipated user desires. In one aspect, the detailed technology concerns phone-based cognition of a scene viewed by the phone's camera. The image processing tasks applied to the scene can be selected from among various alternatives by reference to resource costs, resource constraints, other stimulus information (e.g., audio), task substitutability, etc. The phone can apply more or less resources to an image processing task depending on how successfully the task is proceeding, or based on the user's apparent interest in the task. In some arrangements, the phone is guided in various of its intuitive computing operations by user-spoken clues. A discovery session may be launched by the user speaking a cueing expression, which serves to switch the device from a lower activity state to a heightened alert state. Cognition, and identification of appropriate device response(s), can be aided by collateral information, such as context. A great number of other features and arrangements are also detailed.
Abstract:
A smart phone senses audio, imagery, and/or other stimulus from a user's environment, and acts autonomously to fulfill inferred or anticipated user desires. In one aspect, the detailed technology concerns phone-based cognition of a scene viewed by the phone's camera. The image processing tasks applied to the scene can be selected from among various alternatives by reference to resource costs, resource constraints, other stimulus information (e.g., audio), task substitutability, etc. The phone can apply more or less resources to an image processing task depending on how successfully the task is proceeding, or based on the user's apparent interest in the task. In some arrangements, data may be referred to the cloud for analysis, or for gleaning. Cognition, and identification of appropriate device response(s), can be aided by collateral information, such as context. A great number of other features and arrangements are also detailed.
Abstract:
A smart phone senses audio, imagery, and/or other stimulus from a user's environment, and acts autonomously to fulfill inferred or anticipated user desires. In one aspect, the detailed technology concerns phone-based cognition of a scene viewed by the phone's camera. The image processing tasks applied to the scene can be selected from among various alternatives by reference to resource costs, resource constraints, other stimulus information (e.g., audio), task substitutability, etc. The phone can apply more or less resources to an image processing task depending on how successfully the task is proceeding, or based on the user's apparent interest in the task. In some arrangements, data may be referred to the cloud for analysis, or for gleaning. Cognition, and identification of appropriate device response(s), can be aided by collateral information, such as context. A great number of other features and arrangements are also detailed.
Abstract:
A smart phone senses audio, imagery, and/or other stimulus from a user's environment, and acts autonomously to fulfill inferred or anticipated user desires. In one aspect, the detailed technology concerns phone-based cognition of a scene viewed by the phone's camera. The image processing tasks applied to the scene can be selected from among various alternatives by reference to resource costs, resource constraints, other stimulus information (e.g., audio), task substitutability, etc. The phone can apply more or less resources to an image processing task depending on how successfully the task is proceeding, or based on the user's apparent interest in the task. In some arrangements, data may be referred to the cloud for analysis, or for gleaning. Cognition, and identification of appropriate device response(s), can be aided by collateral information, such as context. A great number of other features and arrangements are also detailed.
Abstract:
A smart phone senses audio, imagery, and/or other stimulus from a user's environment, and acts autonomously to fulfill inferred or anticipated user desires. In one aspect, the detailed technology concerns phone-based cognition of a scene viewed by the phone's camera. The image processing tasks applied to the scene can be selected from among various alternatives by reference to resource costs, resource constraints, other stimulus information (e.g., audio), task substitutability, etc. The phone can apply more or less resources to an image processing task depending on how successfully the task is proceeding, or based on the user's apparent interest in the task. In some arrangements, data may be referred to the cloud for analysis, or for gleaning. Cognition, and identification of appropriate device response(s), can be aided by collateral information, such as context. A great number of other features and arrangements are also detailed.
Abstract:
A smart phone senses audio, imagery, and/or other stimulus from a user's environment, and acts autonomously to fulfill inferred or anticipated user desires. In one aspect, the detailed technology concerns phone-based cognition of a scene viewed by the phone's camera. In one detailed arrangement, image processing tasks applied to the scene are selected from among various alternatives by reference to resource costs, resource constraints, other stimulus information (e.g., audio), task substitutability, etc. The phone applies more or less resources to an image processing task depending on how successfully the task is proceeding, or based on the user's apparent interest in the task. In another detailed arrangement, data is referred to the cloud for analysis, or for gleaning. In still another detailed arrangement, cognition, and identification of appropriate device response(s), is aided by collateral information, such as context. A great number of other features and arrangements are also detailed.
Abstract:
A smart phone senses audio, imagery, and/or other stimulus from a user's environment, and acts autonomously to fulfill inferred or anticipated user desires. In one aspect, the detailed technology concerns phone-based cognition of a scene viewed by the phone's camera. The image processing tasks applied to the scene can be selected from among various alternatives by reference to resource costs, resource constraints, other stimulus information (e.g., audio), task substitutability, etc. The phone can apply more or less resources to an image processing task depending on how successfully the task is proceeding, or based on the user's apparent interest in the task. In some arrangements, data may be referred to the cloud for analysis, or for gleaning. Cognition, and identification of appropriate device response(s), can be aided by collateral information, such as context. A great number of other features and arrangements are also detailed.
Abstract:
One arrangement concerns a portable device (e.g., a smartphone) that executes plural recognition agents, such as agents that perform fingerprint-based object recognition, fingerprint-based audio recognition, barcode reading, watermark decoding, etc. Each of the agents reads from and writes to a blackboard data structure, to which camera and microphone sensors also post their data. Queues of stored sensor data are thus available for the agents to process. In some arrangements, the agents also post—to the blackboard—estimates of the resource costs required to perform certain functions, and estimates of the quality of results that may be achieved by such functions. This allows the system to make informed decisions about how to deploy the device's limited resources (battery, processing cycles, network bandwidth, etc.). A great variety of other features and arrangements are also detailed.
Abstract:
One arrangement concerns a portable device (e.g., a smartphone) that executes plural recognition agents, such as agents that perform fingerprint-based object recognition, fingerprint-based audio recognition, barcode reading, watermark decoding, etc. Each of the agents reads from and writes to a blackboard data structure, to which camera and microphone sensors also post their data. Queues of stored sensor data are thus available for the agents to process. In some arrangements, the agents also post—to the blackboard—estimates of the resource costs required to perform certain functions, and estimates of the quality of results that may be achieved by such functions. This allows the system to make informed decisions about how to deploy the device's limited resources (battery, processing cycles, network bandwidth, etc.). A great variety of other features and arrangements are also detailed.
Abstract:
A smart phone senses audio, imagery, and/or other stimulus from a user's environment, and acts autonomously to fulfill inferred or anticipated user desires. In one aspect, the detailed technology concerns phone-based cognition of a scene viewed by the phone's camera. The image processing tasks applied to the scene can be selected from among various alternatives by reference to resource costs, resource constraints, other stimulus information (e.g., audio), task substitutability, etc. The phone can apply more or less resources to an image processing task depending on how successfully the task is proceeding, or based on the user's apparent interest in the task. In some arrangements, data may be referred to the cloud for analysis, or for gleaning. Cognition, and identification of appropriate device response(s), can be aided by collateral information, such as context. A great number of other features and arrangements are also detailed.