Hybrid power generation facility and method of controlling same

    公开(公告)号:US11572831B2

    公开(公告)日:2023-02-07

    申请号:US17120193

    申请日:2020-12-13

    摘要: Disclosed are a hybrid power generation facility and a control method thereof. The hybrid power generation facility includes a gas turbine including a compressor configured to compress air introduced from an outside, a combustor configured to mix the compressed air with fuel and to combust the air and fuel mixture, and a turbine configured to produce power with first combustion gas discharged from the combustor, a GT (gas turbine) generator configured to generate electric power using a driving force generated by the gas turbine, a boiler including a combustion chamber and configured to mix the first combustion gas supplied from the turbine of the gas turbine with air and fuel supplied from the outside, a steam turbine through which steam generated in the combustion chamber passes, a ST (steam turbine) generator configured to generate electric power using a driving force generated by the steam turbine, and an energy storage system configured to be charged based on a decrease rate of power demand of a grid and a maximum decrease rate of power supply from the GT generator and the ST generator.

    Hybrid power generation equipment and control method thereof

    公开(公告)号:US11702964B2

    公开(公告)日:2023-07-18

    申请号:US17120190

    申请日:2020-12-13

    摘要: Disclosed is a hybrid power generation facility. The hybrid power generation facility includes a gas turbine including a compressor configured to compress air introduced from an outside, a combustor configured to mix the compressed air with fuel and to combust the air and fuel mixture, and a turbine configured to produce power with first combustion gas discharged from the combustor, a boiler including a combustion chamber and a burner installed in the combustion chamber and into which the first combustion gas discharged from the turbine of the gas turbine is introduced, a steam turbine through which steam generated in the combustion chamber passes, a first GT (gas turbine) pipeline connected between the turbine of the gas turbine and the burner, a first air pipeline connected to the first GT pipeline to supply oxygen to the burner, a first oxygen sensor installed at an inlet of the burner to measure an oxygen concentration of a fluid flowing into the burner, and a first GT damper installed in the first GT pipeline to control a flow rate of the fluid flowing through the first GT pipeline according to the oxygen concentration measured by the first oxygen sensor.