Abstract:
A method for forming 1,3,5,7-tetraalkyl-6-(2,4-dimethoxyphenyl)-2,4,8-trioxa-6-phosphaadamantane includes obtaining a solution comprising an ethereal solvent and an aluminum hydride, adding dichloro(2,4-dimethoxyphenyl)phosphine to the solution to produce 2,4-dimethoxyphenylphosphine, and reacting the 2,4-dimethoxyphenylphosphine with an acidic mixture comprising diones to produce 1,3,5,7-tetraalkyl-6-(2,4-dimethoxyphenyl)-2,4,8-trioxa-6-phosphaadamantane. The solution has a temperature from IN greater than −20 C. to 50 C. throughout the method. Another method for forming 1,3,5,7-tetraalkyl-6-(2,4-dimethoxyphenyl)-2,4,8-tri-oxa-6-phosphaadamantane includes obtaining dichloro(2,4-dimethoxyphenyl)phosphine, forming 2,4-dimethoxyphenylphosphine by adding the dichloro(2,4-dimethoxyphenyl)phosphine to a solution comprising at least one solvent and an aluminum hydride, reacting the 2,4-dimethoxyphenylphosphine with a mixture to produce 1,3,5,7-tetraalkyl-6-(2,4-dimethoxyphenyl)-2,4,8-trioxa-6-phosphaadamantane. The mixture includes an acid selected from the group consisting of Lewis acids, sulfonic Bronsted acids, and mixtures thereof, an aromatic or non-aromatic hydrocarbons; and acetylacetone.
Abstract:
Catalyst compositions are prepared by contacting a palladium source and 1,3,5,7-tetramethyl-6-(2,4-dimethoxyphenyl)-2,4,8-trioxa-6-phosphaadamantane and a methoxyocta-diene compound, in a primary aliphatic alcohol, under suitable conditions including a ratio of equivalents of palladium to equivalents of 1,3,5,7-tetramethyl-6-(2,4-dimethoxyphenyl)-2,4,8-trioxa-6-phosphaadamantane ranging from greater than 1:1 to 1:1.3. The result is a complex of palladium, a 1,3,5,7-tetramethyl-6-(2,4-dimethoxyphenyl)-2,4,8-trioxa-6-phosphaada-mantane ligand, and a ligand selected from a methoxyoctadiene ligand, an octadienyl ligand, or a protonated octadienyl. Such complexes may, in solution, exhibit surprising solubility and storage stability and are useful in the telomerization of butadiene, which is a step in the production of 1-octene.
Abstract:
An olefin polymerization catalyst system comprising: a procatalyst component comprising a metal-ligand complex of Formula (I) wherein each X is independently a monodentate or polydentate ligand that is neutral, monoanionic, or dianionic, wherein n is an integer, and wherein X and n are chosen such that the metal-ligand complex of Formula (I) is overall neutral; wherein each R1 and R5 independently is selected from (C1-C40)hydrocarbyls, substituted (C1-C40)hydrocarbyls; (C1-C40)heterohydrocarbyls and substituted (C1-C40)heterohydrocarbyls; wherein each R2 and R4 independently is selected from (C1-C40)hydrocarbyls and substituted (C1-C40)hydrocarbyls; wherein R3 is selected from the group consisting of a (C3-C40)hydrocarbylene, substituted (C3-C40)hydrocarbylene, [(C+Si)3-(C+Si)40]organosilylene, substituted [(C+Si)3-(C+Si)40]organosilylene, [(C+Ge)3-(C+Ge)40]organogermylene, or substituted [(C+Ge)3-(C+Ge)40]organogermylene; wherein each N independently is nitrogen; and optionally, two or more R1-5 groups each independently can combine together to form mono-aza ring structures, with such ring structures having from 5 to 16 atoms in the ring excluding any hydrogen atoms.
Abstract:
Catalyst compositions are prepared by contacting a palladium source and 1,3,5,7-tetramethyl-6-(2,4-dimethoxyphenyl)-2,4,8-trioxa-6-phosphaadamantane and a methoxyocta-diene compound, in a primary aliphatic alcohol, under suitable conditions including a ratio of equivalents of palladium to equivalents of 1,3,5,7-tetramethyl-6-(2,4-dimethoxyphenyl)-2,4,8-trioxa-6-phosphaadamantane ranging from greater than 1:1 to 1:1.3. The result is a complex of palladium, a 1,3,5,7-tetramethyl-6-(2,4-dimethoxyphenyl)-2,4,8-trioxa-6-phosphaada-mantane ligand, and a ligand selected from a methoxyoctadiene ligand, an octadienyl ligand, or a protonated octadienyl. Such complexes may, in solution, exhibit surprising solubility and storage stability and are useful in the telomerization of butadiene, which is a step in the production of 1-octene.
Abstract:
An olefin polymerization catalyst system comprising: a procatalyst component comprising a metal-ligand complex of Formula (I) wherein each X is independently a monodentate or polydentate ligand that is neutral, monoanionic, or dianionic, wherein n is an integer, and wherein X and n are chosen such that the metal-ligand complex of Formula (I) is overall neutral; wherein each R1 and R5 independently is selected from (C1-C40)hydrocarbyls, substituted (C1-C40)hydrocarbyls; (C1-C40)heterohydrocarbyls and substituted (C1-C40)heterohydrocarbyls; wherein each R2 and R4 independently is selected from (C1-C40)hydrocarbyls and substituted (C1-C40)hydrocarbyls; wherein R3 is selected from the group consisting of a (C3-C40)hydrocarbylene, substituted (C3-C40)hydrocarbylene, [(C+Si)3-(C+Si)40]organosilylene, substituted [(C+Si)3-(C+Si)40]organosilylene, [(C+Ge)3-(C+Ge)40]organogermylene, or substituted [(C+Ge)3-(C+Ge)40]organogermylene; wherein each N independently is nitrogen; and optionally, two or more R1-5 groups each independently can combine together to form mono-aza ring structures, with such ring structures having from 5 to 16 atoms in the ring excluding any hydrogen atoms.
Abstract:
Catalyst compositions are prepared by contacting a palladium source and 1,3,5,7-tetramethyl-6-(2,4-dimethoxyphenyl)-2,4,8-trioxa-6-phosphaadamantane and a methoxyocta-diene compound, in a primary aliphatic alcohol, under suitable conditions including a ratio of equivalents of palladium to equivalents of 1,3,5,7-tetramethyl-6-(2,4-dimethoxyphenyl)-2,4,8-trioxa-6-phosphaadamantane ranging from greater than 1:1 to 1:1.3. The result is a complex of palladium, a 1,3,5,7-tetramethyl-6-(2,4-dimethoxyphenyl)-2,4,8-trioxa-6-phosphaada-mantane ligand, and a ligand selected from a methoxyoctadiene ligand, an octadienyl ligand, or a protonated octadienyl. Such complexes may, in solution, exhibit surprising solubility and storage stability and are useful in the telomerization of butadiene, which is a step in the production of 1-octene.
Abstract:
Use a solvent blend that contains 1-methoxy-2,7-octadiene and an alkanols rather than the alkanols by itself to prepare a catalyst precursor suitable for use in butadiene telomerization.
Abstract:
Use a solvent blend that contains 1methoxy-2,7-octadiene and an alkanols rather than the alkanols by itself to prepare a catalyst precursor suitable for use in butadiene telomerization.