摘要:
Disclosed are processes for oligomerizing ethylene by contacting a catalyst system, ethylene, and optionally hydrogen to form an oligomer product in a reaction zone, wherein the catalyst system comprises: a chromium component comprising an N2-phosphinyl amidine chromium compound complex, an N2-phosphinyl formamidine chromium compound complex, and/or an N2-phosphinyl guanidine chromium compound complex, and an aluminoxane; wherein the aluminoxane is characterized by 400 MHz proton NMR in which: (a) the ratio of peaks found in the range of −0.86 ppm to −0.74 ppm to peaks found in a range of −0.03 ppm to 0.07 ppm is less than or equal to 2.8:1; (b) the ratio of peaks found in the range of −0.03 ppm to 0.025 ppm to peaks found in a range of 0.025 ppm to 0.07 ppm is less than or equal to 15:1; and/or (c) the ratio of peaks found in a range of −0.86 ppm to −0.78 ppm to peaks found in the range of −0.78 ppm to −0.74 ppm is less than or equal to 6.5:1.
摘要:
The invention relates to oligomerization of olefins, such as ethylene, to higher olefins, such as a mixture of 1-hexene and 1-octene, using a catalyst system that comprises a) a source of chromium b) one or more activators and c) a phosphacycle-containing ligating compound. Additionally, the invention relates to a phosphacycle-containing ligating compound and a process for making said compound.
摘要:
The disclosure is directed to: (a) phosphacycle ligands; (b) catalyst compositions comprising phosphacycle ligands; and (c) methods of using such phosphacycle ligands and catalyst compositions in bond forming reactions.
摘要:
The disclosure is directed to: (a) phosphacycle ligands; (b) catalyst compositions comprising phosphacycle ligands; and (c) methods of using such phosphacycle ligands and catalyst compositions in bond forming reactions.
摘要:
Compounds of the formula (I) or (I′), where R1 is a hydrogen atom or C1-C4-alkyl and R′1 is C1-C4-alkyl; X1 and X2 are each, independently of one another, a secondary phosphine group; R2 is hydrogen, R01R02R03Si—, C1-C18.acyl substituted by halogen, hydroxy, C1-C8-alkoxy or R04R05N—, -or R06—X01—C(O)—; R01, R02 and R03 are each, independently of one another, C1-C12-alkyl, unsubstituted or C1-C4-alkyl or C1-C4-alkoxy-substituted C6-C10-aryl or C7-C12-aralkyl; R04 and R05 are each, independently of one another, hydrogen, C1-C12-alkyl, C3-C8-cycloalkyl, C6-C10-aryl or C7-C12-aralkyl, or R04 and R05 together are trimethylene, tetramethylene, pentamethylene or 3-oxapcntylene; R06 is C1-C18-alkyl, unsubstituted or C1-C4-alkyl- or C1-C4-alkoxy-substituted C3-C8-cycloalkyl, C6-C10-aryl or C7-C12-aralkyl; X01 is —O— or —NH—; T is C6-C20-arylene; v is 0 or an integer from 1 to 4; and * denotes a mixture of racemic or enantiomerically pure diastereomers or pure racemic or enantiomerically diastereomers, are excellent chiral ligands for metal complexes as enantioselective catalysts for the hydrogenation of prochiral organic compounds.
摘要:
Processes to prepare 5-cyanovaleric acid or its ester are provided, by carbonylation of a pentenenitrile, wherein pentenenitrile is reacted with carbon monoxide and water and/or an alcohol in the presence of a catalyst system. The catalyst system contains: (a) a metal of Group VIII or a compound thereof, (b) a certain bidentate phosphine, arsine and/or stibine ligand, and (c) an acid having a pKa less than 3, as measured at 18° C. in an aqueous solution. &egr;-caprolactam is also prepared by reduction of 5-cyanovaleric acid or ester obtained above to 6-aminocaproic acid or ester, and then cyclisation of the 6-aminocaproic acid or ester to &egr;-caprolactam.
摘要:
Catalyst compositions are prepared by contacting a palladium source and 1,3,5,7-tetramethyl-6-(2,4-dimethoxyphenyl)-2,4,8-trioxa-6-phosphaadamantane and a methoxyocta-diene compound, in a primary aliphatic alcohol, under suitable conditions including a ratio of equivalents of palladium to equivalents of 1,3,5,7-tetramethyl-6-(2,4-dimethoxyphenyl)-2,4,8-trioxa-6-phosphaadamantane ranging from greater than 1:1 to 1:1.3. The result is a complex of palladium, a 1,3,5,7-tetramethyl-6-(2,4-dimethoxyphenyl)-2,4,8-trioxa-6-phosphaada-mantane ligand, and a ligand selected from a methoxyoctadiene ligand, an octadienyl ligand, or a protonated octadienyl. Such complexes may, in solution, exhibit surprising solubility and storage stability and are useful in the telomerization of butadiene, which is a step in the production of 1-octene.
摘要:
Provided is a method for producing a cyclic olefin compound, including a step of producing a cyclic olefin compound by acting a divalent nickel complex represented by General Formula (1) to decarbonylate and decarboxylate an alicyclic dicarboxylic acid anhydride, in which the divalent nickel complex includes at least one specific anionic ligand Y:
Ni(Y)m(L)n (1)
wherein Ni is divalent nickel, Y is an anionic monodentate or polydentate ligand and has at least one Ni-E covalent bond, E is a heteroatom or a n-bonding group, m is 1 or 2, L is a neutral ligand, and n is a real number of 0 to 6.
摘要:
Catalyst compositions are prepared by contacting a palladium source and 1,3,5,7-tetramethyl-6-(2,4-dimethoxyphenyl)-2,4,8-trioxa-6-phosphaadamantane and a methoxyocta-diene compound, in a primary aliphatic alcohol, under suitable conditions including a ratio of equivalents of palladium to equivalents of 1,3,5,7-tetramethyl-6-(2,4-dimethoxyphenyl)-2,4,8-trioxa-6-phosphaadamantane ranging from greater than 1:1 to 1:1.3. The result is a complex of palladium, a 1,3,5,7-tetramethyl-6-(2,4-dimethoxyphenyl)-2,4,8-trioxa-6-phosphaada-mantane ligand, and a ligand selected from a methoxyoctadiene ligand, an octadienyl ligand, or a protonated octadienyl. Such complexes may, in solution, exhibit surprising solubility and storage stability and are useful in the telomerization of butadiene, which is a step in the production of 1-octene.
摘要:
The invention relates to oligomerization of olefins, such as ethylene, to higher olefins, such as a mixture of 1-hexene and 1-octene, using a catalyst system that comprises a) a source of chromium b) one or more activators and c) a phosphacycle-containing ligating compound. Additionally, the invention relates to a phosphacycle-containing ligating compound and a process for making said compound.