Abstract:
Low viscosity mixtures of polysilylated polyethers are described. The mixtures include a) 50 to 95 weight percent of one or more first polysilylated polyethers which are free of urea groups, have an average of two or more terminal hydrolysable silyl groups per molecule and have a molecular weight of 4,000 to 20,000 and 50 to 5 weight percent of one or more second polysilylated polyethers which are free of urea groups, have an average of 1.8 to 4 terminal hydrolysable silyl groups per molecule and have a molecular weight of 1000 to less than 400. The mixtures have surprisingly low viscosities, and are useful as curable components of adhesive, sealant, caulking and/or coating compositions.
Abstract:
Low viscosity mixtures of polysilylated polyethers are described. The mixtures include a) 50 to 95 weight percent of one or more first polysilylated polyethers which are free of urea groups, have an average of two or more terminal hydrolysable silyl groups per molecule and have a molecular weight of 4,000 to 20,000 and 50 to 5 weight percent of one or more second polysilylated polyethers which are free of urea groups, have an average of 1.8 to 4 terminal hydrolysable silyl groups per molecule and have a molecular weight of 1000 to less than 400. The mixtures have surprisingly low viscosities, and are useful as curable components of adhesive, sealant, caulking and/or coating compositions.
Abstract:
A method for forming a piston seal of a hydraulic pump includes forming a reaction mixture that includes a prepolymer component, a polyol additive, a diol component, and a curative component, forming a sealing element with the reaction mixture and a mold, and curing the sealing element to form a piston seal of a hydraulic pump. The prepolymer component includes a polycarbonate-isocyanate prepolymer that is a reaction product of at least an isocyanate component and a polycarbonate polyol component.
Abstract:
A method for forming a piston seal of a hydraulic pump includes forming a reaction mixture that includes a prepolymer component, a polyol additive, a diol component, and a curative component, forming a sealing element with the reaction mixture and a mold, and curing the sealing element to form a piston seal of a hydraulic pump. The prepolymer component includes a polycarbonate-isocyanate prepolymer that is a reaction product of at least an isocyanate component and a polycarbonate polyol component.
Abstract:
A reaction system for forming a hydrophilic polyurethane foam for liquid based cleaning applications includes a composition that has a prepolymer component and an aqueous component. The prepolymer component is a reaction product of an isocyanate component that includes diphenylemethane diisocyanate (MDI) and a polyol component that includes a polyoxyethylene-polyoxypropylene polyol that has an polyoxyethylene content greater than 65 wt %, based on a total weight of the polyoxyethylene-polyoxypropylene polyol. The aqueous component includes at least 60 wt % of water and at least 0.5 wt % of a surfactant, based on a total weight of the aqueous component. A weight ratio of the prepolymer component to the aqueous component in the composition is from 0.5:2 to 2:0.5, the composition has a cream time of less than 20 seconds and a tack free time of less than 7 minutes, and the hydrophilic polyurethane foam for liquid based cleaning applications has a wet tear strength of at least 500 N/m.