摘要:
A charge transport layer for an imaging member comprising a charge transport layer wherein the charge transport layer is coated in two passes and wherein the second pass comprises the application of a charge transport component and a hindered phenol covalently bonded to a polymer. The charge transport layer exhibits excellent wear resistance, excellent electrical performance, and excellent print quality.
摘要:
A charge transport layer for an imaging member comprising a first and second charge transport layer wherein the second charge transport layer comprises a charge transport component, a hindered phenol covalently bonded to a polymer, and an additional polymer binder other than the polymer containing the hindered phenol. The charge transport layer exhibits excellent wear resistance, excellent electrical performance, and excellent print quality.
摘要:
A charge transport layer for an imaging member comprising a photogenerating layer, (1) a first charge transport layer comprised of a charge transport component and a resin binder, and thereover and in contact with the first layer (2) a second top charge transport layer comprised of a charge transport component, and a polymer of a styrene containing hindered phenol. The charge transport layer exhibits excellent wear resistance, excellent electrical performance, and outstanding print quality.
摘要:
A photoconductive imaging member is disclosed comprising a charge generation layer and a charge transport layer comprising an oxidative inhibitor. An electrophotographic imaging process using the imaging member of the invention is also described.
摘要:
A charge transport layer composition for a photoreceptor includes at least a binder, at least one arylamine charge transport material, e.g., N,N′-diphenyl-N,N′-bis(3-methylphenyl)-(1,1′-biphenyl)-4,4′-diamine, and at least one polymer containing carboxylic acid groups or groups capable of forming carboxylic acid groups. The charge transport layer forms a layer of photoreceptor, which also includes an optional anti-curl layer, a substrate, an optional hole blocking layer, an optional adhesive layer, a charge generating layer, and optionally one or more overcoat or protective layers.
摘要:
A charge transport layer composition for a photoreceptor includes at least a binder and a charge transport material of about 100% to about 40% by weight of a total of the charge transport layer N,N-dimethylphenyl)-4-biphenylamine and about 0% to about 60% N,N′-dephenyl-N,N′-bis(3-methylphenyl)-(1,1′-biphenyl)-4,4′-diamine, and wherein the total charge transport material in the composition is 48% or less of the total solids of the composition. The charge transport layer forms a layer of a photoreceptor, which also includes an optional anti-curl layer, a substrate, an optional hole blocking layer, an optional adhesive layer, a charge generating layer, and optionally one or more overcoat or protective layers.
摘要:
Disclosed is a process for the preparation of poly(vinylbenzyl alcohol) by, for example the hydrolysis of poly(vinylbenzyl acetate) in the presence of a basic catalyst in an organic solvent.
摘要:
A photoconductive imaging member comprised of an optional supporting substrate, a hole blocking layer thereover, a photogenerating layer, and a charge transport layer, and wherein the hole blocking layer is comprised of a pyrolyzed polyacrylonitrile.
摘要:
A photoconductive imaging member comprised of an optional supporting substrate, a hole blocking layer thereover, a photogenerating layer, and a charge transport layer, and wherein the hole blocking layer is comprised of a pyrolyzed polyacrylonitrile.
摘要:
An imaging member having a charge transport layer is provided. The charge transport layer includes a plurality of charge transport layers coated from solutions of similar or different compositions or concentrations, wherein the upper or additional transport layer(s) comprise a lower concentration of charge transport compound than the first (bottom) charge transport layer. The charge transport compound included in the first (bottom) charge transport layer may either be the same or different from that included in the additional charge transport layers. The charge transport compound in one or more of the layers is dissolved or molecularly dispersed in an electrically inactive polymer material to form a solid solution. In such a construction, the resulting charge transport layer exhibits enhanced cracking suppression, improves wear resistance, provides excellent imaging member electrical performance, and delivers improved print quality.