摘要:
The subject invention reveals a process for preparing a silica/rubber blend which comprises dispersing silica, a silica coupling agent, and a low molecular weight end-group functionalized diene rubber throughout a cement of a conventional rubbery polymer, and subsequently recovering the silica/rubber blend from the organic solvent. It further reveals a tire having a tread that is made from such a silica/rubber blend.
摘要:
The subject invention reveals a process for preparing a silica/rubber blend which comprises dispersing silica, a silica coupling agent, and a low molecular weight end-group functionalized diene rubber throughout a cement of a conventional rubbery polymer, and subsequently recovering the silica/rubber blend from the organic solvent. It further reveals a tire having a tread that is made from such a silica/rubber blend.
摘要:
This invention relates to the preparation of a silica reinforced elastomer via preparation of a silica-elastomer masterbatch as a composite of synthetic silica and an emulsion polymerization prepared synthetic elastomer. Such masterbatch is prepared by introducing such silica and a silane into a latex of the synthetic elastomer and recovering the composite thereof The invention further includes a rubber composition of at least two elastomers wherein at least one of said elastomers is such masterbatched composite. A tire having a component of such rubber composition, particularly a tire tread, is specifically contemplated.
摘要:
The subject invention discloses a process for producing a neutralized latex that is useful in the manufacture of water reducible coatings which involves:(1) free radical aqueous emulsion polymerizing at a pH of less than about 3.5, a monomer mixture which comprises based on 100 weight percent monomers: (a) from about 45 to about 85 weight percent vinyl aromatic monomers, (b) from about 15 to about 50 weight percent of at least one alkyl acrylate monomer, and (c) from about 1 to about 6 weight percent of at least one unsaturated carbonyl compound; in the presence of about 0.5 to 4.0 phm at least one phosphate ester surfactant; in the presence of about 0.5 to 4.0 phm of at least one water insoluble nonionic surface active agent to produce a latex; and in the presence of at least one seed polymer which is contains of repeat units which are derived from about 45 to about 85 weight percent vinyl aromatic monomers, from about 15 to about 50 weight percent alkyl acrylate monomers, and from about 1 to about 6 weight percent unsaturated carbonyl compounds; and(2) neutralizing the latex with ammonia to a pH which is within the range of about 7 to about 10.5 to produce the neutralized latex.
摘要:
This invention discloses a method for preparing rubber compositions that exhibit unique combinations of properties that are desirable for tire tread applications for enhanced snow/ice and wet traction, low rolling resistance and increased treadwear performance in comparison with conventional silica compounds. Specifically, a high reactively silane coupling agent, such as a mercaptosilane, is used in combination with a silane coupling typically used for silica tread compounds such as bis(triethoxylsilylpropyl)disulfide to treat silica pellets in a hydrocarbon solvent at elevated temperatures. The treated silica is then blended with solution elastomer cement in a hydrocarbon solvent. The deposited reactive silanes partially react with the elastomer molecules forming a layer of polymer grafted on the silica surfaced. This structure significantly improves the silica retention during the steam stripping operation. Almost 100% (99+%) silica retention has been achieved by this invention. After solvent removal from steam stripping, the treated silica/elastomer mixer is dewatered and dried using conventional equipment such as shaker screens, expellers and expanders to form a well-dispersed silica masterbatch. This technique results in silica compounds with excellent silica dispersion and increased filler-polymer interaction, hence enhanced compound performance such as better physical properties, more desirable dynamic properties (low hysteresis at high temperatures and high hysteresis at low temperatures) and increased abrasion resistance.
摘要:
The subject invention reveals a process for preparing a silica/rubber blend which comprises dispersing silica, a silica coupling agent, and a low molecular weight end-group functionalized diene rubber throughout a cement of a conventional rubbery polymer, and subsequently recovering the silica/rubber blend from the organic solvent. It further reveals a tire having a tread that is made from such a silica/rubber blend.
摘要:
The present invention relates to a technique to efficiently and effectively disperse silica throughout a rubbery polymer. By utilizing this technique mechanical mixing procedures that are energy intensive and require large capital investments in mixing equipment can be significantly reduced. By reducing the amount of shearing forces to which the rubber is subjected polymer degradation is also significantly reduced. The utilization of the technique of this invention also results in a uniform blend of the silica throughout the rubber and consequently better interaction between the silica and the rubber. This results in better physical properties, such as higher modulus. The subject invention more specifically discloses a process for preparing a silica/rubber blend which comprises dispersing silica, a silica coupling agent, and a low molecular weight end-group functionalized diene rubber throughout a cement of a conventional rubbery polymer, and subsequently recovering the silica/rubber blend from the organic solvent. The present invention further reveals a tire which is comprised of a generally toroidal-shaped carcass with an outer circumferential tread, two spaced beads, at least one ply extending from bead to bead and sidewalls extending radially from and connecting said tread to said beads, wherein said tread is adapted to be ground-contacting, and wherein said tread is comprised of the silica/rubber blend made by dispersing silica, a silica coupling agent, and a low molecular weight end-group functionalized diene rubber throughout a cement of a conventional rubbery polymer, and subsequently recovering the silica/rubber blend from the organic solvent.
摘要:
A process for achieving a significant reduction in the volatile organic compound content (VOC) of an aqueous polymerization system includes the steps of contacting the aqueous polymerization system with an organic solvent and allowing said organic solvent to be absorbed into polymer particles of said aqueous polymerization system, contacting said aqueous polymerization system and organic solvent with a gas or vapor at temperature and pressure conditions which cause mass transfer of the volatile organic compounds from said latex into said gas or vapor phase, and separating said gas or vapor from said aqueous polymerization system. The solvent is generally absorbed into the polymer particles of the latex and serves as a stripping aid, especially with respect to higher molecular weight compounds which tend to remain trapped in the polymer particles during conventional stripping processes. An important advantage of the invention is that it facilitates significantly enhanced VOC reduction using conventional stripping apparatus with only relatively minor modifications thereto. The improved stripping performance of the invention is achieved without any significant deleterious effect on colloidal stability, average polymer particle size, solids content or other important latex properties.
摘要:
This invention discloses a method for preparing rubber compositions that exhibit unique combinations of properties that are desirable for tire tread applications for enhanced snow/ice and wet traction, low rolling resistance and increased treadwear performance in comparison with conventional silica compounds. Specifically, a high reactively silane coupling agent, such as a mercaptosilane, is used in combination with a silane coupling typically used for silica tread compounds such as bis(triethoxylsilylpropyl)disulfide to treat silica pellets in a hydrocarbon solvent at elevated temperatures. The treated silica is then blended with solution elastomer cement in a hydrocarbon solvent. The deposited reactive silanes partially react with the elastomer molecules forming a layer of polymer grafted on the silica surfaced. This structure significantly improves the silica retention during the steam stripping operation. Almost 100% (99+%) silica retention has been achieved by this invention. After solvent removal from steam stripping, the treated silica/elastomer mixer is dewatered and dried using conventional equipment such as shaker screens, expellers and expanders to form a well-dispersed silica masterbatch. This technique results in silica compounds with excellent silica dispersion and increased filler-polymer interaction, hence enhanced compound performance such as better physical properties, more desirable dynamic properties (low hysteresis at high temperatures and high hysteresis at low temperatures) and increased abrasion resistance.
摘要:
The subject invention discloses a process for producing a neutralized latex that is useful in the manufacture of water reducible coatings which involves.(1) free radical aqueous emulsion polymerizing at a pH of less then about 3.5, a monomer mixture which comprises based on 100 weight percent monomers: (a) from about 45 to about 85 weight percent vinyl aromatic monomers, (b) from about 15 to about 50 weight percent of at least one alkyl acrylate monomer, and (c) from about 1 to about 6 weight percent of at least one unsaturated carbonyl compound; in the presence of about 0.5 to 4.0 phm at least one phosphate ester surfactant; in the presence of about 0.5 to 4.0 phm of at least one water insoluble nonionic surface active agent to produce a latex; and in the presence of at least one seed polymer which contains repeat units which are derived from about 45 to about 85 weight percent vinyl aromatic monomers, from about 15 to about 50 weight percent alkyl acrylate monomers, and from about 1 to about 6 weight percent unsaturated carbonyl compounds; and(2) neutralizing the latex with ammonia to a pH which is within the range of about 7 to about 10.5 to produce the neutralized latex.