摘要:
A digital phase-locked loop (DPLL) supporting two-point modulation is described. In one design, the DPLL includes a phase-to-digital converter and a loop filter operating in a loop, a first processing unit for a lowpass modulation path, and a second processing unit for a highpass modulation path. The first processing unit receives an input modulating signal and provides a first modulating signal to a first point inside the loop after the phase-to-digital converter and prior to the loop filter. The second processing unit receives the input modulating signal and provides a second modulating signal to a second point inside the loop after the loop filter. The first processing unit may include an accumulator that accumulates the input modulating signal to convert frequency to phase. The second processing unit may include a scaling unit that scales the input modulating signal with a variable gain.
摘要:
Techniques for cancelling a disturbance signal from a PLL output signal. In an aspect, a cancellation signal is combined with the signal input to a VCO or DCO in the PLL. In a further aspect, the appropriate cancellation signal is derived by analyzing one or more signals within the PLL. The signals within the PLL may be correlated against one or more disturbance signal templates, such as a sinusoid having a known frequency, to derive one or more correlation coefficients. The coefficients may be applied to weight one or more disturbance synthesis functions to generate the cancellation signal. Further aspects provide for joint analysis, synthesis, and cancellation of signals having unknown frequency from the PLL output.
摘要:
Techniques for cancelling a disturbance signal from a PLL output signal. In an aspect, a cancellation signal is combined with the signal input to a VCO or DCO in the PLL. In a further aspect, the appropriate cancellation signal is derived by analyzing one or more signals within the PLL. The signals within the PLL may be correlated against one or more disturbance signal templates, such as a sinusoid having a known frequency, to derive one or more correlation coefficients. The coefficients may be applied to weight one or more disturbance synthesis functions to generate the cancellation signal. Further aspects provide for joint analysis, synthesis, and cancellation of signals having unknown frequency from the PLL output.
摘要:
A digital phase-locked loop (DPLL) supporting two-point modulation is described. In one design, the DPLL includes a phase-to-digital converter and a loop filter operating in a loop, a first processing unit for a lowpass modulation path, and a second processing unit for a highpass modulation path. The first processing unit receives an input modulating signal and provides a first modulating signal to a first point inside the loop after the phase-to-digital converter and prior to the loop filter. The second processing unit receives the input modulating signal and provides a second modulating signal to a second point inside the loop after the loop filter. The first processing unit may include an accumulator that accumulates the input modulating signal to convert frequency to phase. The second processing unit may include a scaling unit that scales the input modulating signal with a variable gain.
摘要:
A Digital Phase-Locked Loop (DPLL) involves a Time-to-Digital Converter (TDC) that receives a DCO output signal and a reference clock and outputs a first stream of digital values. Quantization noise is reduced by clocking the TDC at a high rate. Downsampling circuitry converts the first stream into a second stream. The second stream is supplied to a phase detecting summer of the DPLL such that a control portion of the DPLL can switch at a lower rate to reduce power consumption. The DPLL is therefore referred to as a multi-rate DPLL. A third stream of digital tuning words output by the control portion is upsampled before being supplied to the DCO so that the DCO can be clocked at the higher rate, thereby reducing digital images. In a receiver application, no upsampling is performed and the DCO is clocked at the lower rate, thereby further reducing power consumption.
摘要:
Techniques for adaptively calibrating a TDC output signal in a digital phase-locked loop (DPLL). In an exemplary embodiment, a calibration factor multiplied to the TDC output signal is adaptively adjusted to minimize a magnitude function of a phase comparator output signal of the DPLL. In an exemplary embodiment, the calibration factor may be adjusted using an exemplary embodiment of the least-mean squares (LMS) algorithm. Further techniques for simplifying the adaptive algorithm for hardware implementation are described.
摘要:
Wireless devices and techniques providing improved system acquisition in an environment of multiple co-existing technologies over a common frequency band are disclosed. In one aspect, at a remote terminal, a power spectral distribution (PSD) of received signals is sequentially measured in contiguous segments of a frequency band of interest. One or more characteristics of the measured PSD is compared to at least one predetermined metric to identify the presence or absence of at least one technology type of the received signals in frequency locations across the band. A system acquisition operation is performed in accordance with the identification, such as a tailored scan of channels at locations where a desired technology is identified.
摘要:
A Digital Phase-Locked Loop (DPLL) involves a Time-to-Digital Converter (TDC) that receives a Digitally Controlled Oscillator (DCO) output signal and a reference clock and outputs a first stream of digital values. The TDC is clocked at a high rate. Downsampling circuitry converts the first stream into a second stream. The second stream is supplied to a phase detecting summer of the DPLL such that a control portion of the DPLL can switch at a lower rate to reduce power consumption. The DPLL is therefore referred to as a multi-rate DPLL. A third stream of digital tuning words output by the control portion is upsampled before being supplied to the DCO so that the DCO can be clocked at the higher rate. In a receiver application, no upsampling is performed and the DCO is clocked at the lower rate.
摘要:
A digital phase-locked loop (DPLL) supporting two-point modulation with adaptive delay matching is described. The DPLL includes highpass and lowpass modulation paths that support wideband and narrowband modulation, respectively, of the frequency and/or phase of an oscillator. The DPLL can adaptively adjust the delay of one modulation path to match the delay of the other modulation path. In one design, the DPLL includes an adaptive delay unit that provides a variable delay for one of the two modulation paths. Within the adaptive delay unit, a delay computation unit determines the variable delay based on a modulating signal applied to the two modulation paths and a phase error signal in the DPLL. An interpolator provides a fractional portion of the variable delay, and a programmable delay unit provides an integer portion of the variable delay.
摘要:
Wireless devices and techniques providing improved system acquisition in an environment of multiple co-existing technologies over a common frequency band are disclosed. In one aspect, at a remote terminal, a power spectral distribution (PSD) of received signals is sequentially measured in contiguous segments of a frequency band of interest. One or more characteristics of the measured PSD is compared to at least one predetermined metric to identify the presence or absence of at least one technology type of the received signals in frequency locations across the band. A system acquisition operation is performed in accordance with the identification, such as a tailored scan of channels at locations where a desired technology is identified.