PHOTONIC BAND GAP FIBERS USING A JACKET WITH A DEPRESSED SOFTENING TEMPERATURE
    5.
    发明申请
    PHOTONIC BAND GAP FIBERS USING A JACKET WITH A DEPRESSED SOFTENING TEMPERATURE 有权
    使用带有柔软温度的夹克的光子带隙纤维

    公开(公告)号:US20160041333A1

    公开(公告)日:2016-02-11

    申请号:US14749850

    申请日:2015-06-25

    摘要: The present invention is generally directed to a photonic bad gap fiber and/or fiber preform with a central structured region comprising a first non-silica based glass and a jacket comprising a second non-silica based glass surrounding the central structured region, where the Littleton softening temperature of the second glass is at least one but no more than ten degrees Celsius lower than the Littleton softening temperature of the first glass, or where the base ten logarithm of the glass viscosity in poise of the second glass is at least 0.01 but no more than 2 lower than the base ten logarithm of the glass viscosity in poise of the first glass at a fiber draw temperature. Also disclosed is a method of making a photonic bad gap fiber and/or fiber preform

    摘要翻译: 本发明一般涉及具有中心结构化区域的光子不良间隙纤维和/或纤维预制件,该中心结构化区域包括第一非二氧化硅基玻璃和包含围绕中心结构化区域的第二非二氧化硅基玻璃的护套,其中Littleton 第二玻璃的软化温度比第一玻璃的利特尔顿软化温度低至少一个但不超过十摄氏度,或者第二玻璃的玻璃粘度的基准十对数为至少0.01,但是没有 在纤维拉伸温度下,第一玻璃的玻璃粘度的基数为10以下的基准值低于2。 还公开了制造光子不良间隙纤维和/或纤维预制件的方法

    SYSTEMS AND METHODS OF ACHIEVING HIGH BRIGHTNESS INFRARED FIBER PARAMETRIC AMPLIFIERS AND LIGHT SOURCES
    7.
    发明申请
    SYSTEMS AND METHODS OF ACHIEVING HIGH BRIGHTNESS INFRARED FIBER PARAMETRIC AMPLIFIERS AND LIGHT SOURCES 有权
    实现高亮度红外光纤参考放大器和光源的系统和方法

    公开(公告)号:US20150340831A1

    公开(公告)日:2015-11-26

    申请号:US14814848

    申请日:2015-07-31

    摘要: Fiber optic amplification in a spectrum of infrared electromagnetic radiation is achieved by creating a chalcogenide photonic crystal fiber (PCF) structure having a radially varying pitch. A chalcogenide PCF system can be tuned during fabrication of the chalcogenide PCF structure, by controlling, the size of the core, the size of the cladding, and the hole size to pitch ratio of the chalcogenide PCF structure and tuned during exercising of the chalcogenide PCF system with pump laser and signal waves, by changing the wavelength of either the pump laser wave or the signal wave, maximization of nonlinear conversion of the chalcogenide PCF, efficient parametric conversion with low peak power pulses of continuous wave laser sources, and minimization of power penalties and minimization of the need for amplification and regeneration of pulse transmissions over the length of the fiber, based on a dispersion factor.

    摘要翻译: 通过产生具有径向变化的间距的硫属元素光子晶体光纤(PCF)结构来实现红外电磁辐射光谱中的光纤放大。 在硫属化物PCF结构的制造期间,可以通过控制核心尺寸,包层尺寸以及硫属化物PCF结构的孔径与间距比并在硫属化物PCF的运动期间进行调节来调整硫属化物PCF系统 系统采用泵浦激光和信号波,通过改变泵浦激光波或信号波的波长,硫属化物PCF的非线性转换最大化,连续波激光源的低峰值功率脉冲的有效参数转换和功率的最小化 基于分散因子,在纤维的长度上对脉冲传输的放大和再生的需要的惩罚和最小化。

    Microstructured Optical Fiber Draw Method with In-Situ Vacuum Assisted Preform Consolidation
    8.
    发明申请
    Microstructured Optical Fiber Draw Method with In-Situ Vacuum Assisted Preform Consolidation 审中-公开
    微结构光纤拉丝方法与原位真空辅助预成型固结

    公开(公告)号:US20100303429A1

    公开(公告)日:2010-12-02

    申请号:US12471668

    申请日:2009-05-26

    摘要: A method and apparatus for making a substantially void-free microstructured optical fiber using a one-step process is provided. A preform for the optical fiber is prepared, comprising an outer jacket made of solid glass, a cladding having a plurality of microtubes and/or microcanes arranged in a desired pattern within the jacket, and a core which may be solid or hollow, with the cladding and the core extending above the top of the outer jacket. The thus-prepared preform is placed into a fiber draw tower. As the fiber is drawn, negative gas pressure is applied to draw the canes together and consolidate the interfacial voids between the canes while positive gas pressure is applied to the preform to keep the holes of the microcanes open during the fiber drawing. The apparatus includes a jig having support tubes that are connected to a vacuum pump for application of the negative gas pressure and a vent tube connected to a gas supply for application of the positive gas pressure. The interfaces between the support tube and the outer jacket and between the vent tube and the cladding are sealed to ensure that the appropriate application of negative or positive pressure during the draw step is obtained. The preforms according to the present invention can include one or more components fabricated from specialty non-silica glass.

    摘要翻译: 提供了使用一步法制造基本上无空隙的微结构光纤的方法和装置。 制备用于光纤的预制件,其包括由实心玻璃制成的外护套,具有多个微管和/或以夹套内所需图案排列的微孔的包层,以及可为实心或中空的芯, 包层,并且芯部延伸到外护套的顶部之上。 将如此制备的预成型件放入纤维拉制塔中。 当纤维被拉伸时,施加负气体压力以一起拉伸所述手杖,并且在将预压件施加正气体压力的同时巩固所述手杖之间的界面空隙,以在纤维拉伸期间保持微孔的孔打开。 该装置包括具有连接到用于施加负气体压力的真空泵的支撑管的夹具和连接到用于施加正气体压力的气体供应的通气管。 支撑管和外护套之间以及通气管和包层之间的界面被密封,以确保在拉伸步骤期间适当地施加负压或正压。 根据本发明的预成型件可以包括由特殊非石英玻璃制成的一个或多个部件。

    Systems and methods of achieving high brightness infrared fiber parametric amplifiers and light sources
    9.
    发明授权
    Systems and methods of achieving high brightness infrared fiber parametric amplifiers and light sources 有权
    实现高亮度红外光纤参数放大器和光源的系统和方法

    公开(公告)号:US09577401B2

    公开(公告)日:2017-02-21

    申请号:US14814848

    申请日:2015-07-31

    摘要: Fiber optic amplification in a spectrum of infrared electromagnetic radiation is achieved by creating a chalcogenide photonic crystal fiber (PCF) structure having a radially varying pitch. A chalcogenide PCF system can be tuned during fabrication of the chalcogenide PCF structure, by controlling, the size of the core, the size of the cladding, and the hole size to pitch ratio of the chalcogenide PCF structure and tuned during exercising of the chalcogenide PCF system with pump laser and signal waves, by changing the wavelength of either the pump laser wave or the signal wave, maximization of nonlinear conversion of the chalcogenide PCF, efficient parametric conversion with low peak power pulses of continuous wave laser sources, and minimization of power penalties and minimization of the need for amplification and regeneration of pulse transmissions over the length of the fiber, based on a dispersion factor.

    摘要翻译: 通过产生具有径向变化的间距的硫属元素光子晶体光纤(PCF)结构来实现红外电磁辐射光谱中的光纤放大。 在硫属化物PCF结构的制造期间,可以通过控制核心尺寸,包层尺寸以及硫属化物PCF结构的孔径与间距比并在硫属化物PCF的运动期间进行调节来调整硫属化物PCF系统 系统采用泵浦激光和信号波,通过改变泵浦激光波或信号波的波长,硫属化物PCF的非线性转换最大化,连续波激光源的低峰值功率脉冲的有效参数转换和功率的最小化 基于分散因子,在纤维的长度上对脉冲传输的放大和再生的需要的惩罚和最小化。

    Optics with Built-In Anti-Reflective Sub-Wavelength Structures
    10.
    发明申请
    Optics with Built-In Anti-Reflective Sub-Wavelength Structures 审中-公开
    内置抗反射子波长结构的光学器件

    公开(公告)号:US20150362707A1

    公开(公告)日:2015-12-17

    申请号:US14301491

    申请日:2014-06-11

    IPC分类号: G02B13/14 G02B3/00 G02B1/118

    摘要: Optical elements having an intrinsic anti-reflective sub-wavelength structure (SWS) built into one or more surfaces thereof so that the structure becomes integral part of the surface of the lens. The SWS is in the form of a structure of identical or similar objects such as straight or graded cones, pillars, pyramids, or other shapes or depressions, where the dimensions of the objects and the distances between them are smaller than the wavelength of light with which they are designed to interact. The SWS can be a periodic or random, and can be the same across the entire surface or can vary across the surface so as to correspond with the index of refraction of the lens at that point.

    摘要翻译: 具有固有的抗反射亚波长结构(SWS)的光学元件,其内置在其一个或多个表面中,使得该结构成为透镜表面的一部分。 SWS是相同或相似物体的结构,例如直的或渐变的锥体,柱子,金字塔或其他形状或凹陷,其中物体的尺寸和它们之间的距离小于光的波长, 他们被设计来交互。 SWS可以是周期性的或随机的,并且在整个表面上可以是相同的,或者可以在表面上变化,以便与该点处的透镜的折射率相对应。