Abstract:
An optical fiber with a low-index core and a core grating has a solid and generally cylindrical annular cladding having a refractive index ncl, a central axis, an inner surface with a radius r wherein r≧2 μm, an outer surface with a radius R, and an annular thickness ΔR≧10 μm. The fiber core has the radius r and a refractive index nc, wherein ncl>nc. The grating is defined by grating elements that extend from the cladding inner surface into the core and that run generally parallel to the central axis. The grating elements define a period Λ, a width t, a spacing a and a height h, wherein 0.5
Abstract:
The glass fiber for an optical amplifier has a glass core, a first glass cladding, and a second glass cladding. The core has a composition, in mol %, of Bi2O3, 30-60; SiO2, 0.5-40; B2O3, 0.5-40; Al2O3, 0-30; Ga2O3, 0-20; Ge2O3, 0-25; La2O3, 0-15; Nb2O5, 0-10; SnO2, 0-30; alkali metal oxides, 0-40; and Er2O3, 0.05-8. The process for making the glass fiber includes first making a preform consisting of the core and the first glass cladding by drawing from a double crucible. Then the second glass cladding is formed around the preform by a rod-in-tube process. The glass claddings have a composition that includes a transition metal compound as an absorbent.
Abstract:
A method of forming a nanowire is disclosed. In one embodiment, a primary preform is formed comprising at least one central region and a support structure. The primary preform is then drawn to a cane, which is then inserted into an outer portion, to form a secondary preform. The secondary preform is then drawn until the at least one central portion is a nanowire. The method can produce nanowires of far greater length than existing methods, and can reduce the likelihood of damaging the nanowire when handling.
Abstract:
A photonic band gap fiber and method of making thereof is provided. The fiber is made of a non-silica-based glass and has a longitudinal central opening, a microstructured region having a plurality of longitudinal surrounding openings, and a jacket. The air fill fraction of the microstructured region is at least about 40%. The fiber may be made by drawing a preform into a fiber, while applying gas pressure to the microstructured region. The air fill fraction of the microstructured region is changed during the drawing.
Abstract:
The present invention provides a method for producing a perform (1) for a holey optical fibre including thermomechanically forming the preform from a unitary body of optically suitable material (20) so that one or more discrete optical elements (30), such as air holes, are formed therein. Each element (30) has a refractive index which is different from the refractive index of the optically suitable material (20). The thermomechanical formation is preferably conducted by extrusion or by injection molding. In a preferred embodiment, the unitary body is a fluid. The method is suitable for production of a preform for a polymer holey optical fibre or an inorganic glass holey optical fibre.
Abstract:
A starting material for producing optical fibers contains metal halides. The refractive index of the optical fiber formed from the starting material is predeterminable by adjusting a partial pressure ratio of a halogen-containing gas mixture. The starting material is produced by mixing halogenated gases into a gas mixture with the desired partial pressure ratio, causing a chemical reaction at a first temperature of the gas mixture with at least metal to form a reaction product, the first temperature being higher than the melting temperature of the reaction product and cooling the reaction product to a second temperature that is below the melting temperature.
Abstract:
The material is in a fluid state at a predetermined temperature above the ambient temperature. According to the invention: a) at least two different compositions of this material in the fluid state are prepared; b) simultaneously and concentrically both the core of the rod with the aid of one of the compositions and a sheath enveloping this core with the aid of another composition are cast; and c) the casting is then taken to a temperature at which it solidifies to constitute the rod. Advantageously, the section of the casting is made to grow by its passing through a cylindrical mold shaped to define the final section of the rod. Application to the manufacture of a glass rod presenting a cross-sectional refractive index gradient.
Abstract:
Apparatus and method for forming ultrapure glass rods (13) or fibers (28) from a polycrystalline rod (11) in which the method comprises the steps of heating a selected short section of the rod in the first furnace (21) to form a molten zone of the rod, heating a second selected short section of the rod in a second furnace (19) which initially is separated from the first furnace by a very short gap to form a second molten zone of the rod which initially is contiguous with and part of the first molten zone of the rod to form a single molten zone 14, and then gradually moving the first and second furnaces apart to first form a rod (13) and then, ultimately, a fiber (28), of ultrapure glass in the increasingly widening gap forming therebetween.
Abstract:
In a method for directly drawing a glass optical waveguide or waveguide blank from two or more reservoirs of molten glass wherein a relatively high refractive index glass core member is clad with a relatively low refractive index glass cladding, control over the refractive index variations occurring due to the migration of dopants between the core and cladding is obtained by providing one or more glass diffusion layers between the core and cladding.
Abstract:
A MOLTEN LAYER OF CLADDING GLASS IS SUPPORTED ON A MOLTEN LAYER OF CORE GLASS AND AN ELONGATED GLASS MEMBER COMPRISING CLADDING ON A CORE IS DRAWN FROM THE FREE SURFACE OF THE UPPER LAYER OF GLASS. THE ELONGATED MEMBER IS COOLED JUST ABOVE THE FREE SURFACE OF THE UPPER LAYER OF MOLTEN GLASS. THE ELONGATED GLASS MEMBER MAY BE DRAWN TO FORM A CLAD FIBER FOR USE IN FIBRE OPTICS. BAIT IS LOWERED TO THE MOLTEN GLASS TO INITIATE DRAWING OF THE ELONGATED GLASS MEMBER.