摘要:
Cardioprotective pacing is applied to prevent and/or reduce cardiac injury associated with myocardial infarction (MI) and revascularization procedure. Pacing pulses are generated from a pacemaker and delivered through one or more pacing electrodes incorporated onto one or more percutaneous transluminal vascular intervention (PTVI) devices during the revascularization procedure. In one embodiment, a PTVI device includes an expandable distal end to provide a stable electrical contact between a pacing electrode and the vascular wall of a blood vessel when the distal end is placed in the blood vessel.
摘要:
Cardioprotective pacing is applied to prevent and/or reduce cardiac injury associated with myocardial infarction (MI) and revascularization procedure. Pacing pulses are generated from a pacemaker and delivered through pacing electrodes incorporated onto percutaneous transluminal vascular intervention (PTVI) devices during the revascularization procedure. Examples of the PTVI devices include a guide catheter, a guide wire, and an angioplasty catheter such as a balloon catheter used in the revascularization procedure. The pacing electrodes are incorporated onto such PTVI devices in various ways.
摘要:
Cardioprotective pacing is applied to prevent and/or reduce cardiac injury associated with myocardial infarction (MI) and revascularization procedure. Pacing pulses are generated from a pacemaker and delivered through one or more pacing electrodes incorporated onto one or more percutaneous transluminal vascular intervention (PTVI) devices during the revascularization procedure. In one embodiment, a PTVI device includes an expandable distal end to provide a stable electrical contact between a pacing electrode and the vascular wall of a blood vessel when the distal end is placed in the blood vessel.
摘要:
Cardioprotective pacing is applied to prevent and/or reduce cardiac injury associated with myocardial infarction (MI) and revascularization procedure. Pacing pulses are generated from a pacemaker and delivered through a plurality of pacing leads introduced into a patient's body through a percutaneous transluminal vascular intervention (PTVI) catheter have a plurality of exit ports. In one embodiment, the exit ports are arranged for the pacing leads to enter multiple specified blood vessels.
摘要:
Cardioprotective pacing is applied to prevent and/or reduce cardiac injury associated with myocardial infarction (MI) and revascularization procedure. Pacing pulses are generated from a pacemaker and delivered through a plurality of pacing leads introduced into a patient's body through a percutaneous transluminal vascular intervention (PTVI) catheter have a plurality of exit ports. In one embodiment, the exit ports are arranged for the pacing leads to enter multiple specified blood vessels.
摘要:
Cardioprotective pacing is applied to prevent and/or reduce cardiac injury associated with myocardial infarction (MI) and revascularization procedure. Pacing pulses are generated from a pacemaker and delivered through one or more pacing electrodes incorporated onto one or more percutaneous transluminal vascular intervention (PTVI) devices during the revascularization procedure. In one embodiment, at least one pacing electrode is constructed as, or incorporated onto, a stent at a distal end portion of a stent catheter.
摘要:
Cardioprotective pacing is applied to prevent and/or reduce cardiac injury associated with myocardial infarction (MI) and revascularization procedure. Pacing pulses are generated from a pacemaker and delivered through one or more pacing electrodes incorporated onto one or more percutaneous transluminal vascular intervention (PTVI) devices during the revascularization procedure. In one embodiment, at least one pacing electrode is constructed as, or incorporated onto, a stent at a distal end portion of a stent catheter.
摘要:
Methods and devices incorporating a guidewire entry port subassembly for use in rapid exchange catheters. The use of a subassembly allows for stronger quality control and simpler fabrication of a rapid exchange device. In several embodiments, methods of making a molded guidewire entry port using a mold, often in conjunction with one or more mandrels, are disclosed. Several device embodiments include a separate molded guidewire port as well as molded guidewire ports which are attached, during a molding step, to segments of a catheter.
摘要:
Methods and devices incorporating a guidewire entry port subassembly for use in rapid exchange catheters. The use of a subassembly allows for stronger quality control and simpler fabrication of a rapid exchange device. In several embodiments, methods of making a molded guidewire entry port using a mold, often in conjunction with one or more mandrels, are disclosed. Several device embodiments include a separate molded guidewire port as well as molded guidewire ports which are attached, during a molding step, to segments of a catheter.
摘要:
Methods and devices incorporating a guidewire entry port subassembly for use in rapid exchange catheters. The use of a subassembly allows for stronger quality control and simpler fabrication of a rapid exchange device. In several embodiments, methods of making a molded guidewire entry port using a mold, often in conjunction with one or more mandrels, are disclosed. Several device embodiments include a separate molded guidewire port as well as molded guidewire ports which are attached, during a molding step, to segments of a catheter.