摘要:
An apparatus 10 is provided that includes a spatial array of at least two unsteady pressure sensors 18–21 placed at predetermined axial locations x1–xN disposed axially along a pipe 14 for measuring at least one parameter of a fluid 12 flowing in the pipe 14. The pressure sensors 18–21 comprise a plurality of pressure sensing elements such as piezoelectric film sensors 23 for measuring unsteady pressures associated with acoustical pressures and/or vortical disturbances. The sensing elements are disposed circumferentially around the pipe and spaced a predetermined distance. The pressure signals P1(t)–PN(t) provided by the pressure sensors 18–21 are processed by a processing unit to provide an output signal indicative of a parameter of the fluid.
摘要翻译:提供了一种装置10,其包括至少两个非定常压力传感器18-21的空间阵列,该至少两个不稳定压力传感器18-21放置在沿着管14轴向设置的预定轴向位置x 1 -x N 用于测量在管14中流动的流体12的至少一个参数。 压力传感器18-21包括多个压力感测元件,例如用于测量与声压和/或旋涡相关的不稳定压力的压电膜传感器23。 感测元件围绕管道周向设置并间隔预定距离。 由压力传感器18-21提供的压力信号P 1(t)-P N N(t)由处理单元处理,以提供表示 流体参数
摘要:
A method for determining one or more fluid flow parameters for a fluid flowing within a pipe is provided. The fluid is a mixture of solid particles and gas. The method includes the steps of: a) providing a meter operable to determine the velocity of the fluid flow through the pipe, which meter is substantially insensitive to the particulate/gas mass ratio of the fluid flow; b) determining the velocity of the fluid flow within the pipe using the meter; and c) determining a particulate/gas mass ratio using a density value for the gas within the flow and the determined fluid flow velocity.
摘要:
An apparatus and method for identifying one or more fluid products flowing within a pipe are provided having a flow meter mounted on the pipe and a processing unit. The flow meter has a plurality of sensors operable to detect vortical disturbances flowing with the fluid products and acoustic waves propagating through the fluid. The sensors produce signals indicative of the vortical disturbances and acoustic waves. The processing unit is operable to determine the speed of sound and volumetric flow rate of the one or more fluid products using the signals from the flow meter. The processing unit includes a database having speed of sound data for a predetermined group of products. The processing unit is operable to identify the type of each product flowing within the pipe given a temperature and pressure value of the products within the pipe.
摘要:
An apparatus 10,70 and method is provided that includes a spatial array of unsteady pressure sensors 15-18 placed at predetermined axial locations X1-XN disposed axially along a pipe 14 for measuring at least one parameter of a solid particle/fluid mixture 12 flowing in the pipe 14. The pressure sensors 15-18 provide acoustic pressure signals P1(t)-PN(t) to a signal processing unit 30 which determines the speed of sound amix of the particle/fluid mixture 12 in the pipe 14 using acoustic spatial array signal processing techniques. The primary parameters to be measured include fluid/particle concentration, fluid/particle mixture volumetric flow, and particle size. Frequency based sound speed is determined utilizing a dispersion model to determine the parameters of interest.
摘要翻译:提供了一种装置10,70和方法,其包括放置在沿着管道轴向设置的预定轴向位置X 1-N N N的非稳态压力传感器15-18的空间阵列 14,用于测量在管14中流动的固体颗粒/流体混合物12的至少一个参数。 压力传感器15-18向信号处理单元30提供声压信号P 1(t)-P N N(t),该信号处理单元30确定声速a 。 要测量的主要参数包括流体/颗粒浓度,流体/颗粒混合物体积流量和颗粒大小。 使用色散模型确定基于频率的声速,以确定感兴趣的参数。
摘要:
A apparatus 10,110 is provided that measures the speed of sound and/or vortical disturbances propagating in a fluid or mixture having entrained gas/air to determine the gas volume fraction of the flow 12 propagating through a pipes and compensating or correcting the volumetric flow measurement for entrained air. The GVF meter includes and array of sensor disposed axially along the length of the pipe. The GVF measures the speed of sound propagating through the pipe and fluid to determine the gas volume fraction of the mixture using array processing. The GVF meter can be used with an electromagnetic meter and a consistency meter to compensate for volumetric flow rate and consistency measurement respective, to correct for errors due to entrained gas/air.
摘要:
Techniques are provided for monitoring particle laden flows in a pipe, that include receiving signalling containing information about a parameter related to a particle laden flow in a pipe, the parameter including either (a) a sound level propagating through the particle laden flow in the pipe, or (b) a static pressure due to an acceleration of the particle laden flow in the pipe; and determining a measurement of a particle size and either a mass flow rate, or a particle-to-air mass ratio, or both the mass flow rate and the particle-to-air mass ratio, associated with the particle laden flow, based at least partly on a change in the parameter.
摘要:
Techniques are provided for monitoring particle laden flows in a pipe, that include receiving signalling containing information about a parameter related to a particle laden flow in a pipe, the parameter including either (a) a sound level propagating through the particle laden flow in the pipe, or (b) a static pressure due to an acceleration of the particle laden flow in the pipe; and determining a measurement of a particle size and either a mass flow rate, or a particle-to-air mass ratio, or both the mass flow rate and the particle-to-air mass ratio, associated with the particle laden flow, based at least partly on a change in the parameter.
摘要:
A device for measurement of entrained and dissolved gas has a first module arranged in relation to a process line for providing a first signal containing information about a sensed entrained air/gas in a fluid or process mixture flowing in the process line at a process line pressure. The device features a combination of a bleed line, a second module and a third module. The bleed line is coupled to the process line for bleeding a portion of the fluid or process mixture from the process line at a bleed line pressure that is lower than the process pressure. The second module is arranged in relation to the bleed line, for providing a second signal containing information about a sensed bleed line entrained air/gas in the fluid or process mixture flowing in the bleed line. The third module responds to the first signal and the second signal, for providing a third signal containing information about a dissolved air/gas flowing in the process line based on a difference between the sensed entrained air/gas and the sensed bleed line entrained air/gas.
摘要:
An apparatus 10 and method is provided that includes a spatial array of unsteady pressure sensors 15-18 placed at predetermined axial locations x1-xN disposed axially along a pipe 14 for measuring at least one parameter of a solid particle/fluid mixture 12 flowing in the pipe 14. The pressure sensors 15-18 provide acoustic pressure signals P1(t)-PN(t) to a signal processing unit 30 which determines the speed of sound amix(ω) of the particle/fluid mixture 12 in the pipe 14 using acoustic spatial array signal processing techniques. The primary parameters to be measured include fluid/particle concentration, fluid/particle mixture volumetric flow, and particle size. Frequency based sound speed is determined utilizing a dispersion model to determine the parameters of interest. the calculating the at least one parameter uses an acoustic pressure to calculate.
摘要翻译:提供了一种装置10和方法,其包括放置在沿着管14轴向设置的预定轴向位置x 1 -x N 2的不稳定压力传感器15-18的空间阵列,用于 测量在管14中流动的固体颗粒/流体混合物12的至少一个参数。 压力传感器15-18向信号处理单元30提供声压信号P 1(t)-P N N(t),该信号处理单元30确定声速a
摘要:
A method and apparatus are provided for calibrating a flow meter having an array of sensors arranged in relation to a pipe that measures a flow rate of a fluid flowing in the pipe. The method features the step of calibrating the flow rate using a calibration correction function based on one or more parameters that characterize either the array of sensors, the pipe, the fluid flowing in the pipe, or some combination thereof. The calibration correction function depends on either a ratio t/D of the pipe wall thickness (t) and the pipe inner diameter (D); a ratio t/λ of the pipe wall thickness (t) and the eddie wavelength (λ) of the fluid; a Reynolds number (ρUD/μ) that characterizes the fluid flow in the pipe; a ratio Δx/D of the sensor spacing (Δx) and the pipe inner diameter (D); a ratio fΔx/Umeas of usable frequencies in relation to the sensor spacing (Δx) and the raw flow rate (Umeas); or some combination thereof. The apparatus takes the form of a flow meter having a calibration correction function module performing the aforementioned functionality.