摘要:
Embodiments of the present disclosure relate to techniques for controlling the temperature of light sources within physiological sensors in order to regulate the wavelengths emitted by the light sources. The sensors may include a temperature control element that is designed to provide heating and/or cooling to the light sources. The sensors also may include a temperature sensor designed to detect the temperature of the light sources. Based on the detected temperature, a controller can vary the amount of heating and/or cooling provided by the temperature control element to maintain the temperature of the light sources at a desired temperature or within a desired temperature range.
摘要:
Embodiments of the present disclosure relate to techniques for controlling the temperature of light sources within physiological sensors in order to regulate the wavelengths emitted by the light sources. The sensors may include a temperature control element that is designed to provide heating and/or cooling to the light sources. The sensors also may include a temperature sensor designed to detect the temperature of the light sources. Based on the detected temperature, a controller can vary the amount of heating and/or cooling provided by the temperature control element to maintain the temperature of the light sources at a desired temperature or within a desired temperature range.
摘要:
Embodiments of the present disclosure relate to a system and method for determining a physiologic parameter of a patient. Specifically, embodiments provided herein include blood pressure cuffs that are adapted to be used in conjunction with a photoplethysmography sensor. The cuff as provided may be configured to be placed over the sensor and/or aligned in a specific manner relative to the sensor. Alternatively, the cuffs may include integral optical components.
摘要:
Embodiments of the present disclosure relate to a system and method for determining a physiologic parameter of a patient. Specifically, embodiments provided herein include blood pressure cuffs that are adapted to be used in conjunction with a photoplethysmography sensor. The cuff as provided may be configured to be placed over the sensor and/or aligned in a specific manner relative to the sensor. Alternatively, the cuffs may include integral optical components.
摘要:
The present disclosure describes techniques that may provide more accurate estimates of arterial oxygen saturation using pulse oximetry by switching between a wavelength spectrum of at least a first and a second light source so that the arterial oxygen saturation estimates at low (e.g., in the range below 75%), medium (e.g., greater than or equal to 75% and less than or equal to 84%), and high (e.g., greater than 84% range) arterial oxygen saturation values are more accurately calculated. In one embodiment, light emitted from a near 660 nm and a near 900 nm emitter pair may be used when the arterial oxygen saturation range is high. In another embodiment, light emitted from a near 730 nm and a near 900 nm emitter pair may be used when the arterial oxygen saturation range is low. In yet another embodiment, light emitted from both a near 660 nm-900 nm emitter pair and light emitted from a near 730 nm-900 nm emitter pair may be used when the arterial oxygen saturation range is in the middle range. Priming techniques may also be used to reduce or eliminate start up delays of certain oximetry system components.
摘要:
A patient monitoring system may provide photoacoustic sensing based on an indicator dilution to determine one or more physiological parameters of a subject. The system may detect an acoustic pressure signal, which may include one or more thermo-dilution responses, one or more hemo-dilution responses, or a combination thereof, using one or more sensor units. The system may use multiple light sources and/or detectors to diagnose and/or improve signal to noise ratio, distinguish between arterial and venous signals, prevent under-sampling, and separate the effects of hemo-dilution and thermo-dilution.
摘要:
Embodiments of the present disclosure relate to a system and method for determining a physiologic parameter of a patient. Specifically, embodiments provided herein include methods and systems for non-invasive determination of blood pressure. Information from a photoplethysmography sensor may be used to determine a systolic pressure, which in turn may be used to control a deflation pattern of a blood pressure cuff.
摘要:
A patient monitoring system may provide photoacoustic sensing based on an indicator dilution to determine one or more physiological parameters of a subject. The system may detect an acoustic pressure signal, which may include one or more thermo-dilution responses, one or more hemo-dilution responses, or a combination thereof, using one or more sensor units. The system may use multiple light sources and/or detectors to diagnose and/or improve signal to noise ratio, distinguish between arterial and venous signals, prevent under-sampling, and separate the effects of hemo-dilution and thermo-dilution.
摘要:
A patient monitoring system may provide photoacoustic sensing based on an indicator dilution to determine one or more physiological parameters of a subject. The system may detect an acoustic pressure signal, which may include one or more thermo-dilution responses, one or more hemo-dilution responses, or a combination thereof, using one or more sensor units. The system may use multiple light sources and/or detectors to diagnose and/or improve signal to noise ratio, distinguish between arterial and venous signals, prevent under-sampling, and separate the effects of hemo-dilution and thermo-dilution.
摘要:
Embodiments of the present disclosure relate to a system and method for determining a physiologic parameter of a patient. Specifically, embodiments provided herein include methods and systems for non-invasive determination of blood pressure. Information from a photoplethysmography sensor may be used to determine a systolic pressure, which in turn may be used to control a deflation pattern of a blood pressure cuff.