摘要:
An apparatus for communicating optical signals between an external device located on a first side of a wellbore barrier and a downhole device located on a second side of the well bore barrier includes a first wireless node which is positioned on the first side of the well bore barrier and is in communication with the external device via a first cable. A second wireless node is positioned on the second side of the well bore barrier and is in communication with the downhole device via a second cable. The first and second wireless nodes are configured to communicate wirelessly through the well bore barrier using near field magnetic induction (NFMI) communications.
摘要:
A subsea system for producing or processing a hydrocarbon production fluid comprises a plurality of sensors, each of which generates a sensor signal that is representative of a condition of a component of the system or a property of a fluid. A base unit mounted on or adjacent the system is in wireless communication with each of the sensors, and a subsea control module is in communication with the base unit. In operation, the sensor signals are transmitted wirelessly from the sensors to the base unit and are then transmitted from the base unit to the subsea control module.
摘要:
An apparatus for communicating optical signals between an external device located on a first side of a wellbore barrier and a downhole device located on a second side of the well bore barrier includes a first wireless node which is positioned on the first side of the well bore barrier and is in communication with the external device via a first cable. A second wireless node is positioned on the second side of the well bore barrier and is in communication with the downhole device via a second cable. The first and second wireless nodes are configured to communicate wirelessly through the well bore barrier using near field magnetic induction (NFMI) communications.
摘要:
A subsea system for producing or processing a hydrocarbon production fluid comprises a plurality of sensors, each of which generates a sensor signal that is representative of a condition of a component of the system or a property of a fluid. A base unit mounted on or adjacent the system is in wireless communication with each of the sensors, and a subsea control module is in communication with the base unit. In operation, the sensor signals are transmitted wirelessly from the sensors to the base unit and are then transmitted from the base unit to the subsea control module.
摘要:
A method for increasing the power transfer efficiency of a wireless induction power and/or data transfer system comprising a magnetic field transmitter which is positioned on a first side of a barrier and a magnetic field receiver which is positioned on a second side of the barrier opposite the first side comprises the steps of disposing at least one flux flow member in or adjacent the barrier at least partially between the transmitter and the receiver. The flux flow member comprises a magnetic permeability different from the magnetic permeability of the barrier. As a result, the flux flow member increases the amount of magnetic flux generated by the transmitter which is coupled through the barrier and into the receiver.
摘要:
A method for increasing the power transfer efficiency of a wireless induction power and/or data transfer system comprising a magnetic field transmitter which is positioned on a first side of a barrier and a magnetic field receiver which is positioned on a second side of the barrier opposite the first side comprises the steps of disposing at least one flux flow member in or adjacent the barrier at least partially between the transmitter and the receiver. The flux flow member comprises a magnetic permeability different from the magnetic permeability of the barrier. As a result, the flux flow member increases the amount of magnetic flux generated by the transmitter which is coupled through the barrier and into the receiver.
摘要:
A leak detector (190) includes a sensor head (260), a light source (200) optically coupled to the sensor head and operable to generate excitation light. A detector (205) is optically coupled to the sensor head and operable to detect fluorescence light. A signal processing unit (210) is coupled to the detector and operable to signal a leak condition responsive to an intensity of the fluorescence light exceeding a threshold. A fluid-tight enclosure (235) encloses at least the light source, the detector, and the signal processing unit.
摘要:
A leak detector (190) includes a sensor head (260), a light source (200) optically coupled to the sensor head and operable to generate excitation light. A detector (205) is optically coupled to the sensor head and operable to detect fluorescence light. A signal processing unit (210) is coupled to the detector and operable to signal a leak condition responsive to an intensity of the fluorescence light exceeding a threshold. A fluid-tight enclosure (235) encloses at least the light source, the detector, and the signal processing unit.
摘要:
A system includes a Christmas tree assembly mounted to a hydrocarbon well, an optical feedthrough module, and a plurality of optical sensors. The optical feedthrough module is operable to communicate through a pressure boundary of the Christmas tree assembly. The plurality of optical sensors is disposed within the Christmas tree assembly for measuring parameters associated with the Christmas tree assembly and is operable to communicate through the optical feedthrough module.
摘要:
A fluorometer comprising an excitation system including an excitation source for producing excitation light capable of causing fluorescence in fluorescent material; and a detection system for detecting said fluorescence. The excitation source comprises one or more light emitting diodes (LEDs) associated with means for causing said excitation light to form a beam that projects, during use, from the fluorometer. In one embodiment, the excitation system and the detection system are located in respective separate housings, the angular disposition between the housings being adjustable. In other embodiments, the excitation system and the detection system are located in the same housing. The fluorometer is particularly suited for use in detecting leaks in aqueous environments, especially when mounted on an underwater vehicle.