摘要:
A method of producing heavy oil from a heavy oil formation with steam assisted gravity drainage. The method begins by drilling a borehole into a heavy oil formation comprising a steam barrier between a first pay zone and a second pay zone, wherein the steam barrier prevents a steam chamber to be formed between the first pay zone and the second pay zone. The steam barrier is then heated with a radio frequency. The steam barrier is then fractured to permit a steam chamber to be formed within the first pay zone and the second pay zone. Heavy oil is then produced from the heavy oil formation with steam assisted gravity drainage.
摘要:
A method of producing heavy oil from a heavy oil formation with steam assisted gravity drainage. The method begins by drilling a borehole into a heavy oil formation comprising a steam barrier between a first pay zone and a second pay zone, wherein the steam barrier prevents a steam chamber to be formed between the first pay zone and the second pay zone. The steam barrier is then heated with a radio frequency. The steam barrier is then fractured to permit a steam chamber to be formed within the first pay zone and the second pay zone. Heavy oil is then produced from the heavy oil formation with steam assisted gravity drainage.
摘要:
The present invention provides a method for accelerating start-up for SAGD-type operation by providing radio frequency heating devices inside the lateral wells that can re-heat the injected steam after losing heat energy during the initial injection. The method also extends the lateral wells such that the drilling of vertical wells can be reduced to save capital expenses.
摘要:
A method is described for accelerating start-up for SAGD-type operation by providing radio frequency heating devices inside the lateral wells that can re-heat the injected steam after losing heat energy during the initial injection. The method also extends the lateral wells such that the drilling of vertical wells can be reduced to save capital expenses.
摘要:
A method of producing heavy oil by first injecting water and sulfur hexafluoride molecules into a region. The method then introduces electromagnetic waves such as microwaves and/or radio frequencies into the region at a frequency sufficient to excite the water and the sulfur hexafluoride molecules and increase the temperature of at least a portion of the water and sulfur hexafluoride molecules within the region to produce heated water and sulfur hexafluoride molecules. At least a portion of the heavy oil is heated in the region by contact with the heated water and sulfur hexafluoride molecules to produce heated heavy oil. The heated heavy oil is then produced.
摘要:
A method of producing heavy oil by first injecting water and sulfur hexafluoride molecules into a region. The method then introduces electromagnetic waves such as microwaves and/or radio frequencies into the region at a frequency sufficient to excite the water and the sulfur hexafluoride molecules and increase the temperature of at least a portion of the water and sulfur hexafluoride molecules within the region to produce heated water and sulfur hexafluoride molecules. At least a portion of the heavy oil is heated in the region by contact with the heated water and sulfur hexafluoride molecules to produce heated heavy oil. The heated heavy oil is then produced.
摘要:
The method begins by forming a gravity drainage production well pair within a formation comprising an injection well and a production well. The pre-soaking stage begins by soaking at least one of the wellbores of the well pair with a solvent, wherein the solvent does not include water. The pre-heating stage begins by heating the soaked wellbore of the well pair to produce a vapor. The squeezing stage begins by introducing the vapor into the soaked wellbore of the well pair, and can thus overlap with the pre-heating stage. The gravity drainage production begins after the squeezing stage, once the wells are in thermal communication and the heavy oil can drain to the lower well.
摘要:
The method begins by forming a gravity drainage production well pair within a formation comprising an injection well and a production well. The pre-soaking stage begins by soaking at least one of the wellbores of the well pair with a solvent, wherein the solvent does not include water. The pre-heating stage begins by heating the soaked wellbore of the well pair to produce a vapor. The squeezing stage begins by introducing the vapor into the soaked wellbore of the well pair, and can thus overlap with the pre-heating stage. The gravity drainage production begins after the squeezing stage, once the wells are in thermal communication and the heavy oil can drain to the lower well.
摘要:
A control system for use in extracting hydrocarbons from an underground deposit is disclosed that comprises an electromagnetic heating system and a processor. The electromagnetic heating system is configured to heat the underground deposit to facilitate fluid flow of a resource for extraction from the underground deposit. The processor is configured to control the electromagnetic heating system in response to temperature data and pressure data for the underground deposit. The processor correlates the temperature data and pressure data with predetermined water phase characteristics to control the electromagnetic heating system so that substantially all water in the underground deposit is maintained in a liquid state. The control system may also generate voxel data corresponding to spatial characteristics of the underground deposit. The spatial characteristics may be presented as a map on a display.
摘要:
The antenna assembly is circularly polarized and may be able to receive multiple independent signals. The antenna assembly includes a plurality of electrically conductive layers arranged about an axis to define a series of adjacent corner reflectors (e.g. four to eight corner reflectors), and a plurality of spiral antenna elements. Each spiral antenna element extends across a respective open end of a corresponding corner reflector. Each corner reflector may have an equal corner angle, and each spiral antenna element may be a bifilar spiral antenna element and/or a log spiral antenna element. A housing may contain the corner reflectors and the spiral antenna elements. Electronic circuitry may be coupled to the plurality of spiral antenna elements and contained within the housing. The antenna is preferential for television reception on multiple channels and directions without consumer adjustment, as the antenna provides spatial, angular and frequency diversity through simultaneous overlapping beams.