摘要:
A method for computer-supported control and/or regulation of a technical system is provided. In the method a reinforcing learning method and an artificial neuronal network are used. In a preferred embodiment, parallel feed-forward networks are connected together such that the global architecture meets an optimal criterion. The network thus approximates the observed benefits as predictor for the expected benefits. In this manner, actual observations are used in an optimal manner to determine a quality function. The quality function obtained intrinsically from the network provides the optimal action selection rule for the given control problem. The method may be applied to any technical system for regulation or control. A preferred field of application is the regulation or control of turbines, in particular a gas turbine.
摘要:
A method of computer-assisted learning of control and/or feedback control of a technical system is provided. A statistical uncertainty of training data used during learning is suitably taken into account when learning control of the technical system. The statistical uncertainty of a quality function, which models an optimal operation of the technical system, is determined by uncertainty propagation and is incorporated during learning of an action-selecting rule. The uncertainty propagation uses a covariance matrix in which non-diagonal elements are ignored. The method can be used for learning control or feedback control of any desired technical systems. In a variant, the method is used for control or feedback control of an operation of a gas turbine. In another variant, the method is used for control or feedback control of a wind power plant.
摘要:
A method for the computer-aided control of a technical system is provided. A recurrent neuronal network is used for modeling the dynamic behaviour of the technical system, the input layer of which contains states of the technical system and actions carried out on the technical system, which are supplied to a recurrent hidden layer. The output layer of the recurrent neuronal network is represented by an evaluation signal which reproduces the dynamics of technical system. The hidden states generated using the recurrent neural network are used to control the technical system on the basis of a learning and/or optimization method.
摘要:
A method for the computer-assisted control and/or regulation of a technical system is provided. The method includes two steps, namely learning the dynamics of a technical system using historical data based on a recurrent neuronal network, and the subsequent learning of an optimum regulation by coupling the recurrent neuronal network to another neuronal network. The method can be used with any technical system in order to control the system in an optimum computer-assisted manner. For example, the method can be used in the control of a gas turbine.
摘要:
A method for the computer-aided learning of a control of a technical system is provided. An operation of the technical system is characterized by states which the technical system can assume during operation. Actions are executed during the operation and convert a relevant state into a subsequent state. The method is characterized in that, when learning the control, suitable consideration is given to the statistical uncertainty of the training data. This is achieved in that the statistical uncertainty of a quality function which models an optimal operation of the technical system is specified by an uncertainty propagation and is incorporated into an action selection rule when learning. By a correspondingly selectable certainty parameter, the learning method can be adapted to different application scenarios which vary in statistical requirements. The method can be used for learning the control of an operation of a turbine, in particular a gas turbine.
摘要:
A method for computer-assisted modeling of a technical system is disclosed. At multiple different operating points, the technical system is described by a first state vector with first state variable(s) and by a second state vector with second state variable(s). A neural network comprising a special form of a feed-forward network is used for the computer-assisted modeling of said system. The feed-forward network includes at least one bridging connector that connects a neural layer with an output layer, thereby bridging at least one hidden layer, which allows the training of networks with multiple hidden layers in a simple manner with known learning methods, e.g., the gradient descent method. The method may be used for modeling a gas turbine system, in which a neural network trained using the method may be used to estimate or predict nitrogen oxide or carbon monoxide emissions or parameters relating to combustion chamber vibrations.
摘要:
A method for computer-assisted modeling of a technical system is disclosed. At multiple different operating points, the technical system is described by a first state vector with first state variable(s) and by a second state vector with second state variable(s). A neural network comprising a special form of a feed-forward network is used for the computer-assisted modeling of said system. The feed-forward network includes at least one bridging connector that connects a neural layer with an output layer, thereby bridging at least one hidden layer, which allows the training of networks with multiple hidden layers in a simple manner with known learning methods, e.g., the gradient descent method. The method may be used for modeling a gas turbine system, in which a neural network trained using the method may be used to estimate or predict nitrogen oxide or carbon monoxide emissions or parameters relating to combustion chamber vibrations.
摘要:
A method for the computer-assisted exploration of states of a technical system is provided. The states of the technical system are run by carrying out an action in a respective state of the technical system, the action leading to a new state. A safety function and a feedback rule are used to ensure that a large volume of data of states and actions is run during exploration and that at the same time no inadmissible actions occur which could lead directly or indirectly to the technical system being damaged or to a defective operating state. The method allows a large number of states and actions relating to the technical system to be collected and may be used for any technical system, especially the exploration of states in a gas turbine. The method may be used both in the real operation and during simulation of the operation of a technical system.
摘要:
A method for the computer-assisted control and/or regulation of a technical system is provided. The method is used to efficiently reduce a high-dimensional state space describing the technical system to a smaller dimension. The reduction of the state space is performed using an artificial recurrent neuronal network. In addition, the reduction of the state space enables conventional learning methods, which are only designed for small dimensions of state spaces, to be applied to complex technical systems with an initially large state space, wherein the conventional learning methods are performed in the reduced state space. The method can be used with any technical system, especially gas turbines.
摘要:
A method for the computer-aided learning of a control of a technical system is provided. An operation of the technical system is characterized by states which the technical system can assume during operation. Actions are executed during the operation and convert a relevant state into a subsequent state. The method is characterized in that, when learning the control, suitable consideration is given to the statistical uncertainty of the training data. This is achieved in that the statistical uncertainty of a quality function which models an optimal operation of the technical system is specified by an uncertainty propagation and is incorporated into an action selection rule when learning. By a correspondingly selectable certainty parameter, the learning method can be adapted to different application scenarios which vary in statistical requirements. The method can be used for learning the control of an operation of a turbine, in particular a gas turbine.