Abstract:
Apparatus for inspecting a surface, including a plurality of pump sources having respective pump optical output ends and providing respective pump beams through the pump optical output ends, and a plurality of probe sources having respective probe optical output ends and providing respective probe beams through the probe optical output ends. There is an alignment mounting which holds the respective pump optical output ends and probe optical output ends in equal respective effective spatial offsets, and optics which convey the respective pump beams and probe beams to the surface, so as to generate returning radiation from a plurality of respective locations thereon, and which convey the returning radiation from the respective locations. The apparatus includes a receiving unit which is adapted to receive the returning radiation and which is adapted to determine a characteristic of the respective locations in response thereto.
Abstract:
Apparatus for inspecting a surface, including a plurality of pump sources having respective pump optical output ends and providing respective pump beams through the pump optical output ends, and a plurality of probe sources having respective probe optical output ends and providing respective probe beams through the probe optical output ends. There is an alignment mounting which holds the respective pump optical output ends and probe optical output ends in equal respective effective spatial offsets, and optics which convey the respective pump beams and probe beams to the surface, so as to generate returning radiation from a plurality of respective locations thereon, and which convey the returning radiation from the respective locations. The apparatus includes a receiving unit which is adapted to receive the returning radiation and which is adapted to determine a characteristic of the respective locations in response thereto.
Abstract:
Apparatus for optical inspection of a sample includes a radiation source, adapted to irradiate a spot on the sample with coherent radiation, and collection optics, adapted to collect the radiation scattered from the spot so as to form a beam of scattered radiation. A diffractive optical element (DOE) is positioned to intercept the beam of scattered radiation and is adapted to deflect a first portion of the beam by a predetermined offset relative to a second portion of the beam, and then to optically combine the first portion with the second portion to generate a product beam. A detector is positioned to receive the product beam and to generate a signal responsive thereto, which is processed by a signal processor so as to determine an autocorrelation value of the product beam.
Abstract:
An optical inspection system rapidly evaluates a substrate by illumination of an area of a substrate larger than a diffraction-limited spot using a coherent laser beam by breaking temporal or spatial coherence. Picosecond or femtosecond pulses from a modelocked laser source are split into a plurality of spatially separated beamlets that are temporally and/or frequency dispersed, and then focused onto a plurality of spots on the substrate. Adjacent spots, which can overlap by up to about 60-70 percent, are illuminated at different times, or at different frequencies, and do not produce mutually interfering coherence effects. Bright-field and dark-field detection schemes are used in various combinations in different embodiments of the system.
Abstract:
A method for inspecting a substrate for defects, including: A method for inspecting a substrate for defects, the method including the steps of: (i) obtaining at least two wafer element detection signal; each wafer element detection signal reflects light scattered to a distinct direction; each wafer element detection signal having a wafer element detection value; (ii) calculating at least one wafer element attribute value in response to the at least two wafer element detection signals; retrieving at least one reference wafer element attribute value, each wafer element attribute value corresponding to a reference wafer element attribute value; and (iii) determining a relationship between the at least one reference wafer element attribute value, wafer element attribute value and at least one threshold to indicate a presence of a defect.
Abstract:
An optical inspection system rapidly evaluates a substrate by illumination of an area of a substrate larger than a diffraction-limited spot using a coherent laser beam by breaking temporal or spatial coherence. Picosecond or femtosecond pulses from a modelocked laser source are split into a plurality of spatially separated beamlets that are temporally and/or frequency dispersed, and then focused onto a plurality of spots on the substrate. Adjacent spots, which can overlap by up to about 60-70 percent, are illuminated at different times, or at different frequencies, and do not produce mutually interfering coherence effects. Bright-field and dark-field detection schemes are used in various combinations in different embodiments of the system.
Abstract:
A local area of a sample is focally heated to produce a transient physical deformation. The surface of the structure is optically monitored while the heated area cools to a baseline temperature by illuminating the heated region with one or more probe beams from time to time and detecting returning light. In some embodiments heat dissipation within the structure is correlated with change in optical reflectivity over time. In other embodiments, surface deformation of the structure is correlated with changes in light scattering from the surface. Following application of a pump pulse and no more than 3 probe pulses, a time varying returning light signal is compared with a corresponding returning light signal from a reference. An anomaly in the sample is indicated by a deviation between the two signals. First-degree exponential decay curves may be constructed from the signals, and their decay constants compared.
Abstract:
An optical inspection system rapidly evaluates a substrate by illumination of an area of a substrate larger than a diffraction-limited spot using a coherent laser beam by breaking temporal or spatial coherence. Picosecond or femtosecond pulses from a modelocked laser source are split into a plurality of spatially separated beamlets that are temporally and/or frequency dispersed, and then focused onto a plurality of spots on the substrate. Adjacent spots, which can overlap by up to about 60-70 percent, are illuminated at different times, or at different frequencies, and do not produce mutually interfering coherence effects. Bright-field and dark-field detection schemes are used in various combinations in different embodiments of the system.
Abstract:
An optical inspection system rapidly evaluates a substrate by illumination of an area of a substrate larger than a diffraction-limited spot using a coherent laser beam by breaking temporal or spatial coherence. Picosecond or femtosecond pulses from a modelocked laser source are split into a plurality of spatially separated beamlets that are temporally and/or frequency dispersed, and then focused onto a plurality of spots on the substrate. Adjacent spots, which can overlap by up to about 60-70 percent, are illuminated at different times, or at different frequencies, and do not produce mutually interfering coherence effects. Bright-field and dark-field detection schemes are used in various combinations in different embodiments of the system.
Abstract:
An optical inspection system rapidly evaluates a substrate by illumination of an area of a substrate larger than a diffraction-limited spot using a coherent laser beam by breaking temporal or spatial coherence. Picosecond or femtosecond pulses from a modelocked laser source are split into a plurality of spatially separated beamlets that are temporally and/or frequency dispersed, and then focused onto a plurality of spots on the substrate. Adjacent spots, which can overlap by up to about 60-70 percent, are illuminated at different times, or at different frequencies, and do not produce mutually interfering coherence effects. Bright-field and dark-field detection schemes are used in various combinations in different embodiments of the system.