摘要:
The current invention is directed to a method for designing an ophthalmic lens element, the method comprising the steps of determining a wavefront aberration of an eye in a reference plane, wherein the wavefront aberration of the eye can be described by a first series of polynomials of ascending order up to a first specific order and corresponding first coefficients; and determining a first vision correction of a second specific order to obtain an adapted ophthalmic lens element; determining at least one specified point over an aperture of the adapted ophthalmic lens element; determining a high-order wavefront aberration in the reference plane for each specified point of the adapted ophthalmic lens element, wherein the high-order wavefront aberration can be described by a third series of polynomials of ascending order above the second specific order up to and including the first specific order and corresponding third coefficients; determining a second vision correction of the second specific order for each of the specified points to obtain an optimized ophthalmic lens element based on the first vision correction up to and including the second specific order and based on combined first and third coefficients above the second specific order and up to and including the first specific order. Further, the current invention is directed to a method for manufacturing an ophthalmic lens element, a computer program product and a system for carrying out the methods.
摘要:
The current invention is directed to a method for designing an ophthalmic lens element, the method comprising the steps of determining a wavefront aberration of an eye in a reference plane, wherein the wavefront aberration of the eye can be described by a first series of polynomials of ascending order up to a first specific order and corresponding first coefficients; determining a first vision correction of a second specific order; determining at least one specific point over an aperture of the adapted ophthalmic lens element; determining a high-order wavefront aberration in the reference plane for each specified point of the adapted ophthalmic lens element, wherein the high-order wavefront aberration can be described by a third series of polynomials of ascending order above the second specific order up to and including the first specific order and corresponding third coefficients; and determining a second vision correction of the second specific order.
摘要:
The invention relates to a method for determining the location of the ocular pivot point (ADL) in an eye (10) of a test person. In the method, the mean curvature (KH) of the cornea (14) of the eye (10) is determined. The mean phase error (PF) of the eye (10) is determined as is the eye length (LA) from the mean curvature (KH) and the mean phase error (PF). The location of the ocular pivot point (ADL) is determined from the eye length (LA).
摘要:
The invention relates to a method for determining the location of the ocular pivot point (ADL) in an eye (10) of a test person. In the method, the mean curvature (KH) of the cornea (14) of the eye (10) is determined. The mean phase error (PF) of the eye (10) is determined as is the eye length (LA) from the mean curvature (KH) and the mean phase error (PF). The location of the ocular pivot point (ADL) is determined from the eye length (LA).
摘要:
An optical observation instrument, in particular a spectacle, a reading aid or a telescope, comprises an optical element, in particular a spectacle lens, adapted to be controllably adjustable in its refractive power, a sensor, and a control unit for adjusting the refractive power as a function of signals from the sensor. The sensor is a brightness sensor. In a method of controllably adjusting a refractive power of an optical element in an optical observation instrument an optical parameter is captured by means of a sensor and the refractive power is adjusted as a function of a signal from the sensor. By means of the sensor the brightness of the light impinging on the optical instrument is captured.
摘要:
In a method for producing a lens, in particular a spectacle lens, central aberrations of an eye, to be corrected, of an ametropic person, such as sphere, cylinder and axis, are compensated. At least one refracting surface of the lens is configured such that for at least one direction of view both a dioptric correction of the ametropia is performed and aberrations of higher order are corrected. Their effects on the visual acuity and/or the contrast viewing are a function of the size of the pupillary aperture of the eye to be corrected and are corrected by the lens.
摘要:
In a method for producing a lens (2), in particular a spectacle lens, central aberrations of an eye (1), to be corrected, of an ametropic person, such as sphere, cylinder and axis, are compensated. At least one refracting surface (9, 10) of the lens (2) is configured such that for at least one direction of view both a dioptric correction of the ametropia is performed and aberrations of higher order are corrected. Their effects on the visual acuity and/or the contrast viewing are a function of the size of the pupillary aperture (5) of the eye (1) to be corrected and are corrected by the lens (2).
摘要:
The invention is directed to a method for determining the individually required addition (Add) of a vision assist for an eye, the method having the following steps: a) a preliminary addition (Addpreliminary) is determined; b) the depth of field (T) of the eye is individually determined; and, c) the addition (Add) is computed according to the following equation: Add=Addpreliminary−ωT; wherein ω defines a real number which lies in the range 0
摘要:
The invention is directed to a method for determining the individually required addition (Add) of a vision assist for an eye, the method having the following steps: a) a preliminary addition (Addpreliminary) is determined; b) the depth of field (T) of the eye is individually determined; and, c) the addition (Add) is computed according to the following equation: Add=Addpreliminary−ωT; wherein ω defines a real number which lies in the range 0
摘要:
A method of designing and/or selecting a progressive addition lens design for a wearer is disclosed. In an embodiment, the method includes displaying a graphical representation of an initial progressive addition lens design including design parameters having design values. A user interface is provided including, for each of one or more of the design parameters, a control that is adjustable over a range of levels, each level in the range being associated with a corresponding value of the respective design parameter. A control is adjusted to select a level and the selection is processed so as to substantially simultaneously update the displayed graphical representation in accordance with the selected level to provide a modified progressive lens design. A system for designing and/or selecting a progressive addition lens design for a wearer is also disclosed.