摘要:
A method of isolating sources of variance in parametric data includes steps of: (a) cleaning a data set of measurements for a plurality of parameters; (b) generating a principal component analysis basis from the cleaned data set; (c) estimating an independent component analysis model from the principal component analysis basis; (d) calculating percentages of variance for the plurality of parameters explained by each component in the estimated independent component analysis model; (e) if the calculated percentages of variance indicate that a component is a minor component, then transferring control to step (f), else transferring control to step (g); (f) removing the minor component from the principal component analysis basis and transferring control to step (c); and (g) generating as output the estimated independent component analysis model wherein no component of the independent component analysis model is a minor component.
摘要:
A method of isolating sources of variance in parametric data includes steps of: (a) cleaning a data set of measurements for a plurality of parameters; (b) generating a principal component analysis basis from the cleaned data set; (c) estimating an independent component analysis model from the principal component analysis basis; (d) calculating percentages of variance for the plurality of parameters explained by each component in the estimated independent component analysis model; (e) if the calculated percentages of variance indicate that a component is a minor component, then transferring control to step (f), else transferring control to step (g); (f) removing the minor component from the principal component analysis basis and transferring control to step (c); and (g) generating as output the estimated independent component analysis model wherein no component of the independent component analysis model is a minor component.
摘要:
A method for determining component patterns of a raw substrate map. A subset of substrate patterns is selected from a set of substrate patterns, and combined into a composite substrate map. The substrate patterns are weighted. The composite substrate map is compared to the raw substrate map, and a degree of correlation between the composite substrate map and the raw substrate map is determined. The steps are iteratively repeated until the degree of correlation is at least a desired degree, and the weighted subset of substrate patterns is output as the component patterns of the raw substrate map.
摘要:
Methods and apparatus for determining a cardiac parameter from cardiovascular pressure signals including arterial blood pressure (ABP) and the photoplethysmographic signal to quantify the degree of amplitude modulation due to respiration and predict fluid responsiveness are disclosed. Disclosed embodiments include a method for assessing fluid responsiveness implemented in a digital computer with one or more processors comprising: (a) measuring a cardiovascular signal, and (b) computing a dynamic index predictive of fluid responsiveness from said cardiovascular signal using a nonlinear state space estimator. According to one particular embodiment, and without limitation, the nonlinear state space estimator is based on a model for cardiovascular signals such as arterial blood pressure or plethysmogram signals, and employs a marginalized particle filter to estimate a dynamic index predictive of fluid responsiveness that is substantially equivalent to a variation in pulse pressure of said cardiovascular signal.
摘要:
Disclosed embodiments include a system for objective assessment of motor signs at the extremities that comprises (a) a device for objective motor sign measurement, (b) a test protocol defining a prescribed repetitive activity, and (c) a signal processing and analysis system to generate one or more impairment metrics. According to a particular embodiment, the device for objective motor sign measurement is characterized by including means for producing a continuous measure of position of a limb or extremity during said prescribed repetitive activity during the entire movement.
摘要:
Disclosed embodiments include an apparatus for generating a plurality of movement impairment indices from one or more kinematic signals to characterize movement disorders. Additionally we disclose methods for generating a plurality of movement impairment indices from one or more kinematic signals obtained from one or more kinematic sensors, said methods implemented in a digital computer with one or more processors in order to characterize movement disorders based on spectral analysis, regularity metrics, and time-frequency analsysis.
摘要:
The present invention provides a method, system, and apparatus to monitor cardiovascular signals such as arterial blood pressure (ABP), pulse oximetry (POX), and intracranial pressure (ICP). The system can be used to calculate and monitor useful clinical information such as heart rate, respiratory rate, pulse pressure variation (PPV), harmonic phases, pulse morphology, and for artifact removal. The method uses a statistical state-space model of cardiovascular signals and a generalized Kalman filter (EKF) to simultaneously estimate and track the cardiovascular parameters of interest such as the cardiac fundamental frequency and higher harmonics, respiratory fundamental frequency and higher harmonics, cardiac component harmonic amplitudes and phases, respiratory component harmonic amplitudes and phases, and PPV.
摘要:
Disclosed embodiments include an apparatus that comprises (a) a kinematics sensor module including an accelerometer, a gyroscope, a magnetometer, or combinations thereof; and (b) a bidirectional wireless communication module configured for wirelessly synchronizing the sampling time instances of the kinematics sensor module with the sampling time instances of at least a second wearable apparatus including a second kinematics sensor module.
摘要:
Disclosed embodiments include a complete system and platform which allows for continuous monitoring of movement disorders during normal daily activities in the clinic, home, and other normal daily environments. The system comprises: 1) a wearable apparatus for continuous monitoring of movement disorders, 2) a docking station, 3) a web server, and 4) methods for statistical analysis that generate movement impairment measures. Disclosed embodiments include a wearable movement monitoring apparatus comprising of (a) a sensor module including a plurality of low power micro-electromechanical systems kinematics sensors; (b) a microprocessor module including a low power microcontroller configured for device control, device status, and device communication; (c) a data storage module including a solid state local storage medium; (d) a wireless communication module including a low power surface mount transceiver and an integrated antenna; and (e) a power and docking module including a battery, an energy charging regulator circuit, and a docking connector.