摘要:
An Ethernet virtual switched sub-network (VSS) is implemented as a virtual hub and spoke architecture overlaid on hub and spoke connectivity built of a combination of Provider Backbone Transport (spokes) and a provider backbone bridged sub-network (hub). Multiple VSS instances are multiplexed over top of the PBT/PBB infrastructure. A loop free resilient Ethernet carrier network is provided by interconnecting Provider Edge nodes through access sub-networks to Provider Tandems to form Provider Backbone Transports spokes with a distributed switch architecture of the Provider Backbone Bridged hub sub-network. Provider Backbone transport protection groups may be formed from the Provider Edge to diversely homed Provider Tandems by defining working and protection trunks through the access sub-network. The Provider Backbone Transport trunks are Media Access Control (MAC) addressable by the associated Provider Edge address or by a unique address associated with the protection group in the Provider Backbone Bridged network domain.
摘要:
An Ethernet virtual switched sub-network (VSS) is implemented as a virtual hub and spoke architecture overlaid on hub and spoke connectivity built of a combination of Provider Backbone Transport (spokes) and a provider backbone bridged sub-network (hub). Multiple VSS instances are multiplexed over top of the PBT/PBB infrastructure. A loop free resilient Ethernet carrier network is provided by interconnecting Provider Edge nodes through access sub-networks to Provider Tandems to form Provider Backbone Transports spokes with a distributed switch architecture of the Provider Backbone Bridged hub sub-network. Provider Backbone transport protection groups may be formed from the Provider Edge to diversely homed Provider Tandems by defining working and protection trunks through the access sub-network. The Provider Backbone Transport trunks are Media Access Control (MAC) addressable by the associated Provider Edge address or by a unique address associated with the protection group in the Provider Backbone Bridged network domain.
摘要:
A resilient virtual Ethernet ring has nodes interconnected by working and protection paths. Each node has a set of VLAN IDs (VIDs) for tagging traffic entering the ring by identifying the ingress node and whether the traffic is on the working or protection path. MAC addresses are learned in one direction around the ring. A port aliasing module records in a forwarding table a port direction opposite to a learned port direction. Each node can also cross-connect working and protection paths. If a span fails, the two nodes immediately on either side of the failure are cross-connected to fold the ring working-path traffic is cross-connected onto the protection path at the first of the two nodes and is then cross-connected back onto the working path at the second of the two nodes so that traffic always ingresses and egresses the ring from the working path.
摘要:
A system for controlling packet forwarding through a point-to-point (p2p) connection between first and second end nodes of a packet network domain having a mesh topology. The system comprises a sub-ring network instantiated in the network domain, the sub-ring network comprising a pair of topologically diverse ring spans extending between the first and second end nodes. Each of the end nodes is controlled to forward packets of the p2p connection through the sub-ring network in accordance with a ring network routing scheme, and an intermediate node traversed by one of the ring spans is controlled to forward packets of the p2p connection through the ring span in accordance with a linear path routing scheme.
摘要:
A system for controlling packet forwarding through a point-to-point (p2p) connection between first and second end nodes of a packet network domain having a mesh topology. The system comprises a sub-ring network instantiated in the network domain, the sub-ring network comprising a pair of topologically diverse ring spans extending between the first and second end nodes. Each of the end nodes is controlled to forward packets of the p2p connection through the sub-ring network in accordance with a ring network routing scheme, and an intermediate node traversed by one of the ring spans is controlled to forward packets of the p2p connection through the ring span in accordance with a linear path routing scheme.
摘要:
Systems and methods for ring protection switching in a network based on selectively blocking and unblocking a port include forwarding traffic via the port over a data channel that utilizes a first service identifier, wherein the data channel is routed in the network along a closed loop; and selectively blocking and unblocking traffic on the port to provide the ring protection switching over the closed loop, wherein the selectively blocking and unblocking is performed based on a management channel that utilizes a second service identifier that is a different type from the first service identifier.
摘要:
A method, a network, and a network element use dynamic packet traffic performance adjustment techniques. In an exemplary embodiment, the dynamic resizing techniques utilize different packet connections providing connectivity to same sites between which bandwidth resizing is needed. Each of the packet connections has a separate and independent bandwidth profile that governs an amount of traffic that is dispatched over each packet connection. A network element sourcing traffic into the packet connections uses bridge functionality that dispatches client traffic onto all of the packet connections or an individual packet connection. This effectively means that the transport network bandwidth utilization is only consumed by a single packet connection, i.e., the packet connection-A (even through there are multiple configured). The network element sinking the traffic selects from a single active packet connection.
摘要:
A method, network element, and network provide detecting a failure on both ports of a major ring at a network element that has an interconnecting sub-ring terminating thereon; causing a block at an associated sub-ring termination port of the interconnecting sub-ring responsive to the failure on both the ports of the major ring; and monitoring the failure and clearing the block responsive to a recovery of one or both ports from the failure. The method, network, and network element include G.8032 multiple concurrent or simultaneous fault recovery mechanisms that traffic being transported between an interconnected major ring and a sub-ring to be successfully delivered in the event of dual concurrent faults on the major ring.
摘要:
The present disclosure provides systems and methods for scaling performance of Ethernet Ring Protection Protocol. Specifically, the systems and methods may apply to G.8032 and may provide protection switching control plane performance scaling benefits. In an exemplary embodiment, the present invention summarizes the per “virtual” ring control plane protocol into a single logical ring control plane protocol. Advantageously, the present invention transforms the G.8032 protocol from a per-virtual ring protocol to a per-logical ring control protocol. The mechanism/methodology that is used is to include minimal per-virtual ring instance information in to the Ring Automated Protection Switching (R-APS) (control) frames. Additionally, the present invention cleanly decouples the placement of the R-APS (control) channel block location on the ring from that of the virtual channel data blocks. Current G.8032 specifications tightly couple the location of each R-APS (control) channel block and the virtual channel block that it is managing.
摘要:
The present disclosure provides protection systems and methods for Ethernet ports. In particular, the present invention may provide a form of facility protection for any two facilities, located on any two cards. The facilities are provisioned as a protected pair and using automatic ITU-T Y.1731 control frames for control. In an exemplary embodiment, provisioning includes creation of an L2 protection service and associating it to a pair of facilities. One facility is identified as a working facility and the other as a protection facility. Under normal conditions (i.e., no facility fault), the working facility is in an active state and not conditioning while the protection facility is in a standby state and transmitting conditioning to subtending equipment. If a facility fault is detected at the working facility, then the working facility transmits condition Remote Fault (RF) and the protection facility removes it's transmit conditioning and becomes the active facility.