摘要:
A method and apparatus for managing manned and automated utility vehicles, and for picking up and delivering objects by automated vehicles. A machine vision image acquisition apparatus determines the position and the rotational orientation of vehicles in a predefined coordinate space by acquiring an image of one or more position markers and processing the acquired image to calculate the vehicle's position and rotational orientation based on processed image data. The position of the vehicle is determined in two dimensions. Rotational orientation (heading) is determined in the plane of motion. An improved method of position and rotational orientation is presented. Based upon the determined position and rotational orientation of the vehicles stored in a map of the coordinate space, a vehicle controller, implemented as part of a computer, controls the automated vehicles through motion and steering commands, and communicates with the manned vehicle operators by transmitting control messages to each operator.
摘要:
A method and apparatus for managing manned and automated utility vehicles, and for picking up and delivering objects by automated vehicles. A machine vision image acquisition apparatus determines the position and the rotational orientation of vehicles in a predefined coordinate space by acquiring an image of one or more position markers and processing the acquired image to calculate the vehicle's position and rotational orientation based on processed image data. The position of the vehicle is determined in two dimensions. Rotational orientation (heading) is determined in the plane of motion. An improved method of position and rotational orientation is presented. Based upon the determined position and rotational orientation of the vehicles stored in a map of the coordinate space, a vehicle controller, implemented as part of a computer, controls the automated vehicles through motion and steering commands, and communicates with the manned vehicle operators by transmitting control messages to each operator.
摘要:
A method and apparatus for avoiding collisions of moving vehicles in an environment that utilizes a position and rotational orientation system to track vehicle locations within a preconfigured operational zone, the method comprising using position tracking data to calculate a predicted trajectory and safety zone of each vehicle for a predetermined prediction time period and determining potential areas of intersection with vehicles to predict collisions.
摘要:
A method and apparatus for avoiding collisions of moving vehicles in an environment that utilizes a position and rotational orientation system to track vehicle locations within a preconfigured operational zone, the method comprising using position tracking data to calculate a predicted trajectory and safety zone of each vehicle for a predetermined prediction time period and determining potential areas of intersection with vehicles to predict collisions.
摘要:
Methods and apparatus for tracking the location of one or more unit loads in a coordinate space in a facility, comprising an integrated system that identifies a load by communicating with a host computer, determines the position of the load in the coordinate space, and stores the position and load identity in a Load Map. A mobile subsystem on each conveying vehicle identifies the location and orientation of that vehicle using a position/orientation sensor, confirms acquisition of the load, and communicates the information to a fixed-base subsystem when the load is deposited on an automated conveying device. A conveyor controller tracks the load as it is conveyed on the automated conveying device and identifies the load to a subsequent conveying vehicle based upon its position on the conveying device. Loads that are not initially identified are assigned a pseudo-identification for tracking until they can be positively identified.
摘要:
Methods and apparatus for determining the location of one or more unit loads in a coordinate space in a facility, comprising an integrated system that identifies a load by reading indicia on the load, determines the position of the indicia in the coordinate space, and stores the indicia position and load identity in a Label Map. A mobile subsystem on each conveying vehicle identifies the location and orientation of that vehicle using a position/orientation sensor, determines the identity of the load, establishes a Target Cube to discriminate the desired load from nearby loads, confirms acquisition of the load, and communicates the information to a fixed-base subsystem. Load identity and the location and orientation of the vehicle when a load is deposited are used to create a Load Map that contains the identity, position and orientation of all identified loads in the coordinate space.