摘要:
A terminal member (120) for an electrolyte sensor (24) having a first diameter section (122) separated from a second diameter section (124) by a shoulder (126). A stepped axial bore (138) extends from a second end (134) forward a first end (132). First and second passages (128 and 130) extend from the first end (132) to the second end (134). An axial slot (136) extends through the second diameter (124) to the stepped axial bore (138). First and second grooves (156 and 158) located on the periphery of the first diameter (122) extend to a first radial slot (160). A second radial slot (162) is offset from the first radial slot (160). The first and second radial slots (160 and 162) position terminals (164 and 164') connected to a heater member (92) located in bore (138) while first and second contact rings (142 and 144) are located on shoulder (126) and (140) to provide isolation for electrical paths between an external surface (80) and internal surface (82) of an electrolyte sensor (24).
摘要:
An integrated LCC-based strain gage sensor, in which at least two LCC traces or strands run across a microcavity within the cylinder head gasket. In one aspect of the present invention, a system is provided comprising a signal source and a microcavity through which an input signal from the signal source passes and which alters the input signal as a result of a response of the microcavity to a strain. An LCC connects the microcavity and the signal source and an input signal propagates through the LCC. The microcavity may comprise one or more reflective surfaces which alters the input signal as a result of a change in a dimension of the microcavity. In another aspect of the invention, the microcavity produces an output signal that has an intensity or frequency different from that of the input signal upon undergoing a deformation.
摘要:
A method of assembling a heated electrochemical sensor (24) for use in sensing exhaust gases in an internal combustion engine (16). A tubular electrolyte member (72) having a closed end (74) is insulated from a metal shell (30). The external surface (80) and internal surface (82) of the electrolyte member (72) are coated with a conductive material. A sleeve (96) retains a terminal member (120) having first (142) and second (144) contact rings located on shoulders (126) and (140). Terminals (164 and 164') are located in slots (160 and 162) in bore (138) on terminal member (120). A tubular heater (92) has an end (93) inserted in bore (138) until contact surfaces (161 and 163) engage terminals (164 and 164'). A coil spring (146) is placed on tubular heater (92) and a wave or washer spring (148) is placed adjacent contact ring (142). Sleeve (96) and shell (30) are brought together and spot welded (108). Thereafter, a sealed joint is produced to complete the manufacture of the heated electrochemical sensor (24).
摘要:
An oxygen sensor (24) having an electrolyte member (72) with a thimble that is held in a metal shell (30) by an insulating member (56). The thimble has an external surface (80) and internal surface (82) that are coated with a conductive material. A sleeve (96) is attached to the metal shell (30) by spot welds (108) and a seal is established therebetween. A terminal member (120) located in sleeve (96) includes a first contact ring (142) that is connected by a spring (148) and cylinder (152) to the external surface (80) and a second contact ring (144) that is connected by a coil spring (146) to the internal surface (82). Terminals (164 and 164')carried by terminal member (120) hold a tubular housing (90) of a heater member (92). Tubular housing (90) has an end (94) that is located in the thimble of electrolyte member (72). When electrical current is supplied to heater member (92) the temperature of the thimble is maintained above a minimum operating temperature of the electrolyte member (72). The external surface (80) of member (72) is subjected to exhaust gases while a reference gas is transmitted to internal surface (82). Changes in ion flow are carried by leads (106 and 106') to a controller (20) to provide an indication of the oxygen in the exhaust gases.
摘要:
An integrated loadcell system, having a loadcell body having a leg connected to a spanning member, the leg having a transducer mounted thereto and a housing coupled to the loadcell body forming a wheatstone bridge circuit with the transducer; where an output of the wheatstone bridge circuit is indicative of a load experienced by the loadcell body.
摘要:
A method for improving the atomization quality from a fluid injector includes the steps of inducing a first vortex turbulence in the fluid flowing past a first protrusion in a supply orifice having a flow axis therein, guiding the fluid through a turbulence cavity and then out through a first metering orifice having another protrusion positioned downstream from the first protrusion by a distance y measured generally parallel to the flow axis and by a distance x measured generally perpendicular to the flow axis. The droplet size of the fluid exiting from the metering orifice is reduced by sizing the x and y dimensions to position the first vortex turbulence within the turbulence cavity operatively adjacent to and upstream from the first metering orifice. In a preferred embodiment, the ratio of x/y is greater than 0.5 and less than 5. A fuel injector nozzle practicing this process is also provided.
摘要:
A fuel injector for improving the atomization quality of fuel flowing into an internal combustion engine, includes a body having first and second turbulence cavities defined therein. First and second supply orifices in the body are coupled into their corresponding turbulence cavities for guiding the flow of fuel thereinto. First and second metering orifices in the body are coupled from corresponding first and second turbulence cavities for exhausting the atomized fuel therefrom in first and second fuel flows. One rim of each supply orifice is paired with a second rim of an adjacent metering orifice in order to produce a turbulence within the turbulence cavity. The metering orifice rim is spaced downstream by a distance y and laterally offset by a distance x from the supply orifice rim such that x/y is greater than 0.1. The fuel flowing from the first and second metering orifices includes lateral momentum components that cooperate to control the resultant cone angle of the fuel flowing from the injector. A plurality of hillocks are located within the turbulence cavity to enhance atomization. A method of operation for the apparatus is also provided.
摘要:
A sensor (24) having a metal shell (30) joined to a sleeve (96) to locate a heater (92) in a thimble of an electrolyte member (72). A sealed joint is produced between the sleeve (96) and metal shell (30) to define a sealed reference chamber (118). A porous filter (112) in the sleeve (96) prevents water in environmental air from entering the reference chamber (118). Leads (106') and 106") which pass through the porous filter (112) are connected to terminal (164 and 164'). Terminals (164 and 164') located in a terminal member (120) position a heater (92) within chamber (118) and the electrolyte member (72). Leads (106 and 106.sup.n) which pass through the porous filter are connected to contact rings (142 and 144). Contact rings (142 and 144) are connected to an external and internal coating (80 and 82) on the electrolyte member (72). In response to a signal from a controller (26) electrical current is supplied to the heater (92) to maintain the temperature in chamber (118) above present limits such that changes in the ion conduction through the electrolyte member (72) is accurately measured. The changes result from a difference in the oxygen content of air in the reference chamber (118) as compared with oxygen in an exhaust gas supplied to the external surface (80).