摘要:
A braided flange branch graft formed of a braided super elastic memory material includes a neck between an inner flange and an outer flange. The neck is positioned in a side opening in a sidewall of a main stent graft and the inner flange and outer flange are deployed on opposite sides of the sidewall. The inner flange and the outer flange have a diameter greater than a diameter of the side opening in the sidewall of the main stent graft. Thus, the sidewall of the main stent graft is sandwiched between the inner flange and the outer flange securely and simply mounting the braided flange branch graft to the main stent graft. The braided flange has a substantially unobstructed fluid communication passage therethrough. Further, when stretched into a substantially cylindrical shape for delivery, the braided flange branch graft has a small delivery profile and is extremely flexible.
摘要:
A braided flange branch graft formed of a braided super elastic memory material includes a neck between an inner flange and an outer flange. The neck is positioned in a side opening in a sidewall of a main stent graft and the inner flange and outer flange are deployed on opposite sides of the sidewall. The inner flange and the outer flange have a diameter greater than a diameter of the side opening in the sidewall of the main stent graft. Thus, the sidewall of the main stent graft is sandwiched between the inner flange and the outer flange securely and simply mounting the braided flange branch graft to the main stent graft. The braided flange has a substantially unobstructed fluid communication passage therethrough. Further, when stretched into a substantially cylindrical shape for delivery, the braided flange branch graft has a small delivery profile and is extremely flexible.
摘要:
A braided flange branch graft formed of a braided super elastic memory material includes a neck between an inner flange and an outer flange. The neck is positioned in a side opening in a sidewall of a main stent graft and the inner flange and outer flange are deployed on opposite sides of the sidewall. The inner flange and the outer flange have a diameter greater than a diameter of the side opening in the sidewall of the main stent graft. Thus, the sidewall of the main stent graft is sandwiched between the inner flange and the outer flange securely and simply mounting the braided flange branch graft to the main stent graft. The braided flange has a substantially unobstructed fluid communication passage therethrough. Further, when stretched into a substantially cylindrical shape for delivery, the braided flange branch graft has a small delivery profile and is extremely flexible.
摘要:
A polymer coating/ring is employed to aid in the sealing and connection of modular elements used in body flow lumens for the exclusion and bypass of diseased regions of the flow lumen, such as where aneurysm occurs adjacent to branching blood vessels.
摘要:
A method includes deploying a fenestration segment stent-graft into a main vessel such that a fenestration section of the fenestration segment stent-graft covers a first branch vessel emanating from the main vessel. The fenestration segment stent-graft includes a proximal section, a distal section, and the fenestration section attached to and between the proximal section and the distal section. The fenestration section has a greater resistance to tearing than the proximal section and the distal section facilitating formation of a collateral opening aligned with the branch vessel in the fenestration section.
摘要:
A polymer coating/ring is employed to aid in the sealing and connection of modular elements used in body flow lumens for the exclusion and bypass of diseased regions of the flow lumen, such as where aneurysm occurs adjacent to branching blood vessels.
摘要:
A stent graft includes at least one aperture extending through the main body thereof, into which an extension portion may be deployed for positioning within an adjacent branch flow lumen. The extension portions include self biasing features, wherein the extension is biased into engagement with the main body to seal the interface thereof. Additionally, the extension portion may be configured for tortuous or deviated anatomy, to enable sealing of the extension portion with the body while extending the extension portion in a substantially non-radial direction from the main body.
摘要:
The invention provides a method of providing an endovascular bypass. The method includes the steps of inserting an elastic needle carrying a guidewire adjacent an ostium via a catheter and extending the needle through a branch vessel wall. The method continues by extending the needle through the extravascular space and inserting the needle through a main vessel wall to create an opening. The needle is retracted, leaving the guidewire in place. A bypass stent graft is inserted along the guidewire to provide a pathway between the branch vessel and the main vessel, and the inserted bypass stent graft is expanded. The branch vessel is occluded between the ostium of the bypass stent graft and the main vessel, and a main stent graft is inserted in the main vessel proximate the opening in the main vessel wall.
摘要:
The invention provides a method of providing an endovascular bypass. The method includes the steps of inserting an elastic needle carrying a guidewire adjacent an ostium via a catheter and extending the needle through a branch vessel wall. The method continues by extending the needle through the extravascular space and inserting the needle through a main vessel wall to create an opening. The needle is retracted, leaving the guidewire in place. A bypass stent graft is inserted along the guidewire to provide a pathway between the branch vessel and the main vessel, and the inserted bypass stent graft is expanded. The branch vessel is occluded between the ostium of the bypass stent graft and the main vessel, and a main stent graft is inserted in the main vessel proximate the opening in the main vessel wall.
摘要:
The invention provides a method of providing an endovascular bypass. The method includes the steps of inserting an elastic needle carrying a guidewire adjacent an ostium via a catheter and extending the needle through a branch vessel wall. The method continues by extending the needle through the extravascular space and inserting the needle through a main vessel wall to create an opening. The needle is retracted, leaving the guidewire in place. A bypass stent graft is inserted along the guidewire to provide a pathway between the branch vessel and the main vessel, and the inserted bypass stent graft is expanded. The branch vessel is occluded between the ostium of the bypass stent graft and the main vessel, and a main stent graft is inserted in the main vessel proximate the opening in the main vessel wall.