摘要:
Methods, systems, and apparatuses for down-converting an electromagnetic (EM) signal by aliasing the EM signal, and applications thereof are described herein. Reducing or eliminating DC offset voltages and re-radiation generated when down-converting an electromagnetic (EM) signal is also described herein. Down-converting a signal and improving receiver dynamic range is also described herein.
摘要:
Methods, systems, and apparatuses for down-converting an electromagnetic (EM) signal by aliasing the EM signal, and applications thereof are described herein. Reducing or eliminating DC offset voltages and re-radiation generated when down-converting an electromagnetic (EM) signal is also described herein. Down-converting a signal and improving receiver dynamic range is also described herein.
摘要:
An apparatus for improving dynamic range includes a frequency down-conversion module that receives an input signal and a bias circuit. The bias circuit includes a first resistor and a second resistor. The first resister has a first terminal coupled to a bias point and a second terminal coupled to a first voltage reference. The second resistor has a first terminal coupled to the bias point and a second terminal coupled to a second voltage reference. The bias point is coupled to the input signal. The frequency down-conversion module outputs a down-converted output signal. The bias circuit thereby adjusts a voltage of the input signal.
摘要:
Methods, systems, and apparatuses for down-converting an electromagnetic (EM) signal by aliasing the EM signal, and applications thereof are described herein. Reducing or eliminating DC offset voltages and re-radiation generated when down-converting an electromagnetic (EM) signal is also described herein. Down-converting a signal and improving receiver dynamic range is also described herein.
摘要:
Methods, systems, and apparatuses for down-converting an electromagnetic (EM) signal by aliasing the EM signal, and applications thereof are described herein. Reducing or eliminating DC offset voltages and re-radiation generated when down-converting an electromagnetic (EM) signal is also described herein. Down-converting a signal and improving receiver dynamic range is also described herein.
摘要:
Methods and systems for vector combining power amplification are disclosed herein. In one embodiment, a plurality of signals are individually amplified, then summed to form a desired time-varying complex envelope signal. Phase and/or frequency characteristics of one or more of the signals are controlled to provide the desired phase, frequency, and/or amplitude characteristics of the desired time-varying complex envelope signal. In another embodiment, a time-varying complex envelope signal is decomposed into a plurality of constant envelope constituent signals. The constituent signals are amplified equally or substantially equally, and then summed to construct an amplified version of the original time-varying envelope signal. Embodiments also perform frequency up-conversion.
摘要:
Methods and systems for vector combining power amplification are disclosed herein. In one embodiment, a plurality of signals are individually amplified, then summed to form a desired time-varying complex envelope signal. Phase and/or frequency characteristics of one or more of the signals are controlled to provide the desired phase, frequency, and/or amplitude characteristics of the desired time-varying complex envelope signal. In another embodiment, a time-varying complex envelope signal is decomposed into a plurality of constant envelope constituent signals. The constituent signals are amplified equally or substantially equally, and then summed to construct an amplified version of the original time-varying envelope signal. Embodiments also perform frequency up-conversion.
摘要:
A quadrature signal generator receives a differential input signal and generates quadrature output signals that are 90 degrees out-of-phase with each other. The quadrature generator includes a coarse stage and a plurality of refinement stages. The coarse stage generates quadrature signals that may have some phase error, and the refinement stages process the quadrature signals to reduce any phase error. The refinement stages receive quadrature signals from the output of the coarse stage, and processes the quadrature signals to reduce the phase errors. The coarse stage and the refinement stages are configured using delay circuits that can be implemented with inverter circuits, such as, for example, CMOS inverter circuits. In the refinement stages, corresponding outputs of the delay stages are averaged together to reduce the quadrature phase error.