摘要:
An apparatus and method for expanding the FOV of a truncated computed tomography (CT) scan. An iterative calculation is performed on the original CT image to produce an estimate of the image. The calculated estimate of the reconstructed image includes the original image center and a estimate of the truncated portion outside the image center. The calculation uses an image mask with the image center as one boundary.
摘要:
An apparatus and method for expanding the FOV of a truncated computed tomography (CT) scan. An iterative calculation is performed on the original CT image to produce an estimate of the image. The calculated estimate of the reconstructed image includes the original image center and a estimate of the truncated portion outside the image center. The calculation uses an image mask with the image center as one boundary.
摘要:
An apparatus and method for expanding the FOV of a truncated computed tomography (CT) scan. An iterative calculation is performed on the original CT image to produce an estimate of the image. The calculated estimate of the reconstructed image includes the original image center and a estimate of the truncated portion outside the image center. The calculation uses an image mask with the image center as one boundary.
摘要:
An apparatus and method for expanding the FOV of a truncated computed tomography (CT) scan. An iterative calculation is performed on the original CT image to produce an estimate of the image. The calculated estimate of the reconstructed image includes the original image center and a estimate of the truncated portion outside the image center. The calculation uses an image mask with the image center as one boundary.
摘要:
A method for co-registering attenuation data of MR coils in a MR/PET imaging system with PET emission data includes computing a likelihood of PET emission data on a grid in a parameter space based on an algorithm, wherein the algorithm defines L(λ, μbody, μcoils{p}) as a log-likelihood of measured PET data, where λ is an emitter distribution (image), μbody is a known linear attenuation coefficient (LAC) distribution of the body from MRI, μcoils is a linear attenuation coefficient map of MRI coils, and {p} is a set of parameters governing the position of each coil, wherein if μcoils is assumed, then λ can be reconstructed and forward projected and L can be computed. The method includes adjusting the estimated position of the MR coils to maximize the likelihood of emission data based on the computed L.
摘要:
The present invention is a method of generating a best estimate of an image attenuation map derived from a truncated image attenuation map and PET emissions data for the object being imaged by a morphological imaging modality. The method involves a plurality of steps beginning with the recordation and processing of PET emissions data. Next, the morphological imaging modality records image data which is processed to determine an attenuation map. The attenuation map, for image modalities such as CT and MR scanning systems integrated with PET, is truncated, resulting in a truncated attenuation map image. Pixels for which attenuation data needs to be determined are identified and attenuation coefficients for these pixels are estimated and combined with the truncated attenuation map to generate a full initial attenuation map for the image, which is iteratively processed together with the PET emission data until the improvement change in the emission image reaches a defined threshold improvement level.
摘要:
Using complementary reconstruction, images from short time frames may be generated for positron emission tomography. Detected events are gathered over a long period, such as three minutes. The detected events from a short period, such as one or two seconds, are removed. Reconstruction is performed on the detected events from the long period and another reconstruction is performed on the detected events from the long period without the detected events from the short period. The second reconstruction is subtracted from the first, providing data representing the short period. The data may result in better image quality than merely reconstructing an individual frame for the short period.
摘要:
A method for interpolating at least one oblique line of response ray representing nuclear image projection data through a rectangular volume and a system for using the method. The method consists of steps of interpolating all the direct rays in a rectangular volume, making a projected ray by projecting the oblique ray onto a surface of the rectangular volume, matching the projected ray to a coinciding interpolated direct ray, shearing the rectangular volume to match the projected ray, and interpolating the oblique ray in the sheared volume.
摘要:
A phantom and method are provided for co-registering a magnetic resonance image and a nuclear medical image. The phantom includes a first housing defining a first chamber configured to receive a magnetic resonance material upon which magnetic resonance imaging can be performed in order to produce the magnetic resonance image. The phantom also includes three or more second housings configured to be attached to the first housing, where the second housings each define a second chamber configured to receive a radioactive material upon which nuclear imaging can be performed in order to produce the nuclear medical image and upon which the magnetic imaging can be performed in order to produce the magnetic resonance image. The first chamber has a volumetric capacity that is larger than a volumetric capacity of each second chamber.
摘要:
A method is disclosed for at least partly determining and/or adapting an attenuation map used for attenuation correction of Positron Emission Tomography image data sets in a combined Magnetic Resonance-Positron Emission Tomography device. In at least one embodiment of the method, at least one one-dimensional magnetic resonance data set of a patient is recorded along one imaging direction; the boundaries of at least one part of the body of the patient intersected by the imaging direction are determined from the one-dimensional magnetic resonance data set; and the attenuation map is determined and/or adapted at least partly as a function of the boundaries determined.