Abstract:
A vacuum purge system is provided to protect the vacuum pump from becoming flooded with liquid that on occasion is purged with vapors from process equipment. The liquid is trapped in a vessel and then evaporated and exhausted through the vacuum pump as vapor. Evaporation of trapped liquid is effected by reducing or stopping the purge stream to the trapping vessel while continuing to operate the vacuum pump, thereby reducing the absolute pressure within the vessel. Evaporation of liquid can also be effected by supplying heat to the trapped vessel, either in cooperation with or instead of the pressure reduction. Use of a programmable logic controller enables a cyclic operation that traps liquid from entering the pump, removes the trapped liquid as vapor, and then resumes normal purge operation.
Abstract:
An adapter manifold comprising a first dual valve block having a first diaphragm valve and a second diaphragm valve; a first, a second, and a third low dead space connector for connecting the adapter manifold with dual valve block to the remaining portions of the chemical delivery system; a first conduit for connecting both the diaphragm side of the first diaphragm valve and the seat side of the second diaphragm valves to the first low dead space connector; a second conduit for connecting the seat side of the first diaphragm valve to the second low dead space connector; and a third conduit for connecting the diaphragm side of the second diaphragm valve to the third low dead space connector.
Abstract:
The present invention is an apparatus for storing and delivering a low vapor pressure process chemical to a process tool for semiconductor fabrication, comprising: a) a bulk container for storing the process chemical; b) a process container for delivering the process chemical to the process tool; c) a first manifold for delivering process chemical from the bulk container to the process container; d) a solvent container containing a quantity of solvent, and; e) a second manifold for delivering the process chemical from the process container to a process tool. A process for using the apparatus is also contemplated.
Abstract:
The present invention is an apparatus and process for storing and delivering a low vapor pressure process chemical to a process tool for semiconductor fabrication, comprising: a) a bulk container for storing the process chemical; b) a process container for delivering the process chemical to the process tool; c) a first manifold for delivering process chemical from the bulk container to the process container; d) a solvent container containing a quantity of solvent, e) a second manifold for delivering the process chemical from the process container to a process tool; f) a solvent recovery container for containing used solvent and removed process chemical, and, g) a solvent evaporator to differentially remove solvent from process chemical in the solvent recovery container by entrainment in a carrier gas, vacuum removal, heating or combinations thereof. The containers can be baffled on their inert gas inlets. The cabinet can be heated.
Abstract:
A high purity chemical delivery system is provided that connects a high purity chemical container to a high purity chemical utilization point and that comprises three manifolds, each of the manifolds having a plurality of diaphragm valves. The inventive system enables rapid clean out and purge after the container is replaced by means of a plurality of vacuum and purge cycles, which remove residual chemical and entrapped impurities while reduced manufacturing downtimes compared with systems in the prior art.
Abstract:
A system for purging high purity interfaces connecting a high purity chemical container to process lines comprises a first purging manifold, connected at one end to a first adapter manifold extending from the high purity chemical container, and connected at the other end either to a process tool, to a second high purity container, to a source of gas, or to a source of vacuum on one side, or to a source of vent or to a source of vacuum on the other side; and a second purging manifold connecting the second adapter manifold either to a source of push gas, a source of purge gas, or a source of vacuum; or to a source of vent. A related method comprises blowing purge gas through both the first and the second purging manifolds, and, optionally, applying vacuum to both purging manifolds.
Abstract:
A method for purging a manifold for the delivery of a high purity chemical by injecting of a purge gas into the manifold under vacuum conditions. In one embodiment, the method comprises a first step of injecting a purge gas into the manifold at a first end while applying vacuum at a second end; a second step of closing the first end and evacuating the manifold by applying vacuum at the second end; and a third step of opening the first end and injecting purge gas into the manifold at the first end while applying vacuum at the second end, causing a turbulent flow of the purge gas along the internal walls of the manifold due to the pressure differential between the purge gas and the evacuated manifold. An effective removal of residuals of the high purity chemical within the manifold is thereby achieved.
Abstract:
A purgeable manifold system for the movement of low vapor pressure chemicals that may be embodied in a variety of forms. In one embodiment, a container for storing the low vapor pressure chemical has a plurality of ports; a first manifold detachably connects a first port to a source of gas, vent, or vacuum by flow communication through a first diaphragm valve; a second manifold detachably connects a second port to a source of gas, vent, vacuum, or low vapor pressure chemical, or to a process tool by flow communication through a second and a third diaphragm valve, or alternatively detachably connects a third port to the same source by flow communication through a fourth and the third diaphragm valve; and a third manifold, detachably connects a fourth port to a source of gas, vent, or vacuum by flow communication through a fifth diaphragm valve.
Abstract:
A manifold comprising a container having two ports; a conduit connecting the container to a source/dispense of chemical having a first end and a second end and a connector for the ends; first block valve having two diaphragm valves, each valve having a valve seat side and a diaphragm side, each valve seat side faces the other valve seat side, and connected to the first end of the conduit, one diaphragm side connected to a first port, and another diaphragm side connected to vent; a second block valve having two diaphragm valves, having a valve seat side and a diaphragm side, wherein each valve seat side faces the other valve seat side, and each valve seat side connected to the second end of the conduit, the diaphragm side of one valve connected to purge, and the diaphragm side of another valve connected to push gas or chemical outlet.
Abstract:
A manifold for transfer of chemical, comprising; a heated first conduit for connecting a vessel for containing the chemical to a another vessel, a source of pressurized gas and a source of vacuum; a heated first block valve assembly having first and second diaphragm valves, each valve having a diaphragm and a valve seat side and a diaphragm side, wherein the valve seat side of each valve is juxtaposed to the valve seat side of the other valve, and each valve seat side of each valve communicating with the first conduit; a first connector in the first conduit for detaching the conduit from the vessel; a second conduit, for delivering chemical to the vessel, the second conduit connected to the diaphragm side of the first valve; and a third conduit, for communicating pressurized gas and vacuum to the first conduit, connected to the diaphragm side of the second valve.