摘要:
Systems and methods sense electrical events about a selected annulus region of the heart to identify the location of an accessory pathway. The systems and methods establish a contact site between heart tissue along the selected annulus and a multi-electrode array having a generally circular shape that conforms to the circumferential geometry of the selected annulus region. The systems and methods maintain the site of contact between the electrode array and heart tissue, while conveying signals representing electrical events sensed by bipolar pairs of the electrodes in the selected annulus region, The systems and methods display the signals as graphic information that represents the time differences between the atrial and ventricular electrogram complexes sensed by bipolar pairs of the electrodes on the selected annulus region. The bipolar pair of electrodes displaying the least time separation between the atrial and ventricular complexes identifies the region of the accessory pathway. With this information, the systems and methods convey energy to one or more of the electrodes of the selected pair to ablate tissue in the selected annulus region.
摘要:
Systems and methods sense electrical events in heart tissue to identify the location of an arrhythmogenic focus for ablation. The systems and methods establish a contact site between heart tissue and a curvilinear electrode array. The systems and methods monitor signals representing electrical events sensed by the electrodes in the contact site. The signals are displayed as graphic information that represents the time sequence in which the electrodes sense a given electrical event. By moving the electrode array to one or additional contact sites in the general direction of the electrode that first sensed the electrical event, the physician homes in on a contact site in which all electrodes on the array sense the given electrical event at generally the same time. This contact site contains the arrhythmogenic focus. The systems and methods convey ablating energy to bipolar pairs of the electrodes to form large bipolar lesions in heart tissue.
摘要:
Systems and methods sense electrical events about a selected annulus region of the heart to identify the location of an accessory pathway. The systems and methods establish a contact site between heart tissue along the selected annulus and a multi-electrode array having a generally circular shape that conforms to the circumferential geometry of the selected annulus region. The systems and methods maintain the site of contact between the electrode array and heart tissue, while conveying signals representing electrical events sensed by bipolar pairs of the electrodes in the selected annulus region. The systems and methods display the signals as graphic information that represents the time differences between the atrial and ventricular electrogram complexes sensed by bipolar pairs of the electrodes on the selected annulus region. The bipolar pair of electrodes displaying the least time separation between the atrial and ventricular complexes identifies the region of the accessory pathway. With this information, the systems and methods convey energy to one or more of the electrodes of the selected pair to ablate tissue in the selected annulus region.
摘要:
Systems and methods ablate tissue within the body using a flexible guide element having an axis. A mechanism flexes the element along its axis. The flexible element carries a region for emitting energy. The region creates a lesion having a contour that follows the flexure of the element. The region creates a single continuous lesion that is curvilinear, long and thin. Manipulating such systems and methods creates diverse, specially shaped lesions in body tissue.
摘要:
A method of ablating tissue in the heart to treat atrial fibrillation introduces into a selected atrium an energy emitting element. The method exposes the element to a region of the atrial wall and applies ablating energy to the element to thermally destroy tissue. The method forms a convoluted lesion pattern comprising elongated straight lesions and elongated curvilinear lesions. The lesion pattern directs electrical impulses within the atrial myocardium along a path that activates the atrial myocardium while interrupting reentry circuits that, if not interrupted, would cause fibrillation. The method emulates the surgical maze procedure, but lends itself to catheter-based procedures that do not require open heart surgical techniques. A composite structure for performing the method is formed using a template that displays in planar view a desired lesion pattern for the tissue. An array of spaced apart element is laid on the template. Guided by the template, energy emitting and non-energy emitting zones are formed on the elements. By overlaying the elements, the composite structure is formed, which can be introduced into the body to ablate tissue using catheter-based, vascular access techniques.
摘要:
A method of ablating tissue in the heart to treat atrial fibrillation introduces into a selected atrium an energy emitting element. The method exposes the element to a region of the atrial wall and applies ablating energy to the element to thermally destroy tissue. The method forms a convoluted lesion pattern comprising elongated straight lesions and elongated curvilinear lesions. The lesion pattern directs electrical impulses within the atrial myocardium along a path that activates the atrial myocardium while interrupting reentry circuits that, if not interrupted, would cause fibrillation. The method emulates the surgical maze procedure, but lends itself to catheter-based procedures that do not require open heart surgical techniques. A composite structure for performing the method is formed using a template that displays in planar view a desired lesion pattern for the tissue. An array of spaced apart element is laid on the template. Guided by the template, energy emitting and non-energy emitting zones are formed on the elements. By overlaying the elements, the composite structure is formed, which can be introduced into the body to ablate tissue using catheter-based, vascular access techniques.
摘要:
Methods, apparatus, and systems for occluding a tissue opening are provided. One embodiment includes a catheter having an elongate body and a first lumen to direct hypertonic saline through an opening in the lumen to tissue of a fossa ovalis. The embodiment includes a radiofrequency (RF) electrode coupled to the elongate body proximal a distal end of the elongate body. The RF electrode can emit RF energy to the tissues of the passage and the hypertonic saline can facilitate a distribution of the RF energy along the tissue to fuse the tissue of the passage.
摘要:
A method of ablating tissue in the heart to treat atrial fibrillation introduces into a selected atrium an energy emitting element. The method exposes the element to a region of the atrial wall and applies ablating energy to the element to thermally destroy tissue. The method forms a convoluted lesion pattern comprising elongated straight lesions and elongated curvilinear lesions. The lesion pattern directs electrical impulses within the atrial myocardium along a path that activates the atrial myocardium while interrupting reentry circuits that, if not interrupted, would cause fibrillation. The method emulates the surgical maze procedure, but lends itself to catheter-based procedures that do not require open heart surgical techniques. A composite structure for performing the method is formed using a template that displays in planar view a desired lesion pattern for the tissue. An array of spaced apart element is laid on the template. Guided by the template, energy emitting and non-energy emitting zones are formed on the elements. By overlaying the elements, the composite structure is formed, which can be introduced into the body to ablate tissue using catheter-based, vascular access techniques.
摘要:
A method of ablating tissue in the heart to treat atrial fibrillation introduces into a selected atrium an energy emitting element. The method exposes the element to a region of the atrial wall and applies ablating energy to the element to thermally destroy tissue. The method forms a convoluted lesion pattern comprising elongated straight lesions and elongated curvilinear lesions. The lesion pattern directs electrical impulses within the atrial myocardium along a path that activates the atrial myocardium while interrupting reentry circuits that, if not interrupted, would cause fibrillation. The method emulates the surgical maze procedure, but lends itself to catheter-based procedures that do not require open heart surgical techniques. A composite structure for performing the method is formed using a template that displays in planar view a desired lesion pattern for the tissue. An array of spaced apart element is laid on the template. Guided by the template, energy emitting and non-energy emitting zones are formed on the elements. By overlaying the elements, the composite structure is formed, which can be introduced into the body to ablate tissue using catheter-based, vascular access techniques.
摘要:
A method of ablating tissue in the heart to treat atrial fibrillation introduces into a selected atrium an energy emitting element. The method exposes the element to a region of the atrial wall and applies ablating energy to the element to thermally destroy tissue. The method forms a convoluted lesion pattern comprising elongated straight lesions and elongated curvilinear lesions. The lesion pattern directs electrical impulses within the atrial myocardium along a path that activates the atrial myocardium while interrupting reentry circuits that, if not interrupted, would cause fibrillation. The method emulates the surgical maze procedure, but lends itself to catheter-based procedures that do not require open heart surgical techniques. A composite structure for performing the method is formed using a template that displays in planar view a desired lesion pattern for the tissue. An array of spaced apart element is laid on the template. Guided by the template, energy emitting and non-energy emitting zones are formed on the elements. By overlaying the elements, the composite structure is formed, which can be introduced into the body to ablate tissue using catheter-based, vascular access techniques.