摘要:
A method and system for up-vector detection for ribs in a 3D medical image volume, such as a computed tomography (CT) volume is disclosed. A rib centerline of at least one rib is extracted in a 3D medical image volume. An up-vector is automatically detected at each of a plurality of centerline points of the rib centerline of the at least one rib. The up-vector at each centerline point can be detected using a trained regression function. Alternatively, the up-vector at each centerline point can be detected by detecting an ellipse shape in a cross-sectional rib image generated at each centerline point.
摘要:
A method and system for up-vector detection for ribs in a 3D medical image volume, such as a computed tomography (CT) volume is disclosed. A rib centerline of at least one rib is extracted in a 3D medical image volume. An up-vector is automatically detected at each of a plurality of centerline points of the rib centerline of the at least one rib. The up-vector at each centerline point can be detected using a trained regression function. Alternatively, the up-vector at each centerline point can be detected by detecting an ellipse shape in a cross-sectional rib image generated at each centerline point.
摘要:
A method and system for extracting rib centerlines in a 3D volume, such as a 3D computed tomography (CT) volume, is disclosed. Rib centerline voxels are detected in the 3D volume using a learning based detector. Rib centerlines or the whole rib cage are then extracted by matching a template of rib centerlines for the whole rib cage to the 3D volume based on the detected rib centerline voxels. Each of the extracted rib centerlines are then individually refined using an active contour model.
摘要:
A method and system for extracting rib centerlines in a 3D volume, such as a 3D computed tomography (CT) volume, is disclosed. Rib centerline voxels are detected in the 3D volume using a learning based detector. Rib centerlines or the whole rib cage are then extracted by matching a template of rib centerlines for the whole rib cage to the 3D volume based on the detected rib centerline voxels. Each of the extracted rib centerlines are then individually refined using an active contour model.
摘要:
A method and system for automatic detection and volumetric quantification of bone lesions in 3D medical images, such as 3D computed tomography (CT) volumes, is disclosed. Regions of interest corresponding to bone regions are detected in a 3D medical image. Bone lesions are detected in the regions of interest using a cascade of trained detectors. The cascade of trained detectors automatically detects lesion centers and then estimates lesion size in all three spatial axes. A hierarchical multi-scale approach is used to detect bone lesions using a cascade of detectors on multiple levels of a resolution pyramid of the 3D medical image.
摘要:
A method and system for automatic detection and volumetric quantification of bone lesions in 3D medical images, such as 3D computed tomography (CT) volumes, is disclosed. Regions of interest corresponding to bone regions are detected in a 3D medical image. Bone lesions are detected in the regions of interest using a cascade of trained detectors. The cascade of trained detectors automatically detects lesion centers and then estimates lesion size in all three spatial axes. A hierarchical multi-scale approach is used to detect bone lesions using a cascade of detectors on multiple levels of a resolution pyramid of the 3D medical image.
摘要:
An apparatus and method for training a landmark detector receives training data which includes a plurality of positive training bags, each including a plurality of positively annotated instances, and a plurality of negative training bags, each including at least one negatively annotated instance. Classification function is initialized by training a first weak classifier based on the positive training bags and the negative training bags. All training instances are evaluated using the classification function. For each of a plurality of remaining classifiers, a cost value gradient is calculated based on spatial context information of each instance in each positive bag evaluated by the classification function. A gradient value associated with each of the remaining weak classifiers is calculated based on the cost value gradients, and a weak classifier is selected which has a lowest associated gradient value and given a weighting parameter and added to the classification function.
摘要:
A method and system for automatically detecting liver lesions in medical image data, such as 3D CT images, is disclosed. A liver region is segmented in a 3D image. Liver lesion center candidates are detected in the segmented liver region. Lesion candidates are segmented corresponding to the liver lesion center candidates, and lesions are detected from the segmented lesion candidates using learning based verification.
摘要:
A method and system for automatically detecting liver lesions in medical image data, such as 3D CT images, is disclosed. A liver region is segmented in a 3D image. Liver lesion center candidates are detected in the segmented liver region. Lesion candidates are segmented corresponding to the liver lesion center candidates, and lesions are detected from the segmented lesion candidates using learning based verification.
摘要:
A method and system for automatic magnetic resonance (MR) volume composition and normalization is disclosed. In one embodiment, a plurality of MR volumes is received. A composite MR volume is generated from the plurality of MR volumes. Volume normalization of the composite MR volume is then performed to correct intensity inhomogeneity in the composite MR volume. The volume normalization of the composite MR volume may be performed using template MR volume or without a template MR volume.