摘要:
A capacitive sensor (200) for a touch sensitive electronic device (800) includes at least one graphic (401) visible to a user. The graphic (401) is configured so as to be non-electrically interfering with the electrode array of the capacitive sensor (200). A substrate (101), configured to transmit light, has a layer of capacitive sensor material (201) deposited thereon. The layer of capacitive sensor material (201) is electrically conductive and pellucid. A layer of selectively disposed electrically conductive material (202) is then electrically coupled to the layer of capacitive sensor material (201). The layer of selectively disposed electrically conductive material (202) is arranged as a graphic, which may be a logo, brand, or other mark. The layer of selectively disposed electrically conductive material (202) has a reflectivity that is greater than the layer of capacitive sensor material (201) so as to make the graphic (401) visible to a user.
摘要:
A capacitive sensor (200) for a touch sensitive electronic device (800) includes at least one graphic (401) visible to a user. The graphic (401) is configured so as to be non-electrically interfering with the electrode array of the capacitive sensor (200). A substrate (101), configured to transmit light, has a layer of capacitive sensor material (201) deposited thereon. The layer of capacitive sensor material (201) is electrically conductive and pellucid. A layer of selectively disposed electrically conductive material (202) is then electrically coupled to the layer of capacitive sensor material (201). The layer of selectively disposed electrically conductive material (202) is arranged as a graphic, which may be a logo, brand, or other mark. The layer of selectively disposed electrically conductive material (202) has a reflectivity that is greater than the layer of capacitive sensor material (201) so as to make the graphic (401) visible to a user.
摘要:
An electronic device is operable to determine a touch input applied to a capacitive touch panel system thereof so as to account for time-varying noise affecting the touch panel system. The electronic device includes the touch panel system, an analog-to-digital conversion (ADC) unit, and a processing unit. The processing unit is operable to: receive digital signal values from the ADC unit representing capacitances detected by sensing points of the touch panel system; adjust at least one of the digital signal values based at least on a time-varying noise to produce at least one noise-adjusted value; and determine the touch input based on the at least one noise-adjusted value. In one embodiment, the electronic device determines the time-varying noise prior to adjusting the digital signal values. In another embodiment, the time-varying noise is produced by a display panel of a touchscreen display that also includes the touch panel system.
摘要:
A display device including a plurality of display elements (500) arranged in a matrix, wherein each display element includes a display pixel (510) coupled to a switch (530), and each display element includes an addressable latch (540) having an output coupled to a controlling input of the switch. The addressable latch includes a row address input (532) and a column address input (556). In one mode of operation, at least some display elements are activated at a first rate, and other display elements are activated at a second rate less than the first refresh rate by selectively addressing the display elements.
摘要:
A method for driving a field emission display (100) includes the steps of applying a drive signal (146) to an emission electrode (113) and manipulating the drive signal (146) using a feedback controller to control an electrode voltage signal (158) at the emission electrode (113). A field emission display (100) includes a field emission display device (110), a feedback controller (123), and a current source (120). The current source (120) is connected to an input (144) of the field emission display device (110). An output (131) of the feedback controller (123) is connected to an input (127) of the current source (120), and the input (144) of the field emission display device (110) is connected to the input (129) of the feedback controller (123).
摘要:
A multimodal electronic device (100) includes a shutter enabled dynamic keypad for presenting one of a plurality of keypad configurations to a user. Each keypad configuration, which is presented by an optical shutter (204) that opens or closes windows or shutters that are geometrically configured as alphanumeric or device keys or symbols. Each keypad configuration, in one embodiment, is limited to those needed for the particular mode of operation of the device (100). The optical shutter (204) is a low-resolution display that presents user actuation targets to a user in a low-resolution key area. As each mode of the device changes, the corresponding keypad configuration presented changes accordingly.
摘要:
A method for controlling spacer (108) visibility in a field emission display (100) includes the steps of modifying pixel data for transmission to a plurality of pixels (110) in a first region (112) adjacent to a spacer (108) to render the spacer (108) invisible to a viewer of the field emission display (100). A field emission display (100) with a spacer visibility correction circuit (104) that modifies pixel data for transmission to a plurality of pixels (110) in a first region (112) adjacent to a spacer (108).
摘要:
A display assembly comprises a touch sensor including at least one first electrode and at least one second electrode, and an electrophoretic display (EPD). The EPD including the at least one first electrode as a drive electrode.
摘要:
Portable devices (100) that include displays (102) and are used in widely ranging ambient light conditions use selectable or adjustable optoelectronic input/output compensation functions to drive their displays. According to certain embodiments, a camera (122) or a light sensor (120) is used to measure the ambient light level, and an optoelectronic input/output compensation function that is specifically chosen based on the measured ambient light condition is used to drive the display. Furthermore, according to certain embodiments, the optoelectronic input/output compensation function is selected based on whether a display backlight (230) is turned on or off.
摘要:
A multimodal electronic device (100) includes a shutter enabled dynamic keypad for presenting one of a plurality of keypad configurations to a user. Each keypad configuration, which is presented by an optical shutter (204) that opens or closes windows or shutters that are geometrically configured as alphanumeric or device keys or symbols. Each keypad configuration, in one embodiment, is limited to those needed for the particular mode of operation of the device (100). The optical shutter (204) is a low-resolution display that presents user actuation targets to a user in a low-resolution key area. As each mode of the device changes, the corresponding keypad configuration presented changes accordingly.