摘要:
A fluid-driven, electricity-generating system and method are provided for a data center with a fluid transport pipe. The generating system includes a housing coupled in fluid communication with the fluid transport pipe, an impeller disposed within the housing and positioned to turn with flow of fluid across the impeller, one or more magnetic structures disposed to turn with turning of the impeller, and an electrical circuit. Electricity is generated for the electrical circuit with turning of the one or more magnetic structures, and is supplied to an electrical load disposed within or associated with the data center.
摘要:
A method is presented for adjusting coolant flow resistance through one or more liquid-cooled electronics racks. Flow restrictors are employed in association with multiple heat exchange tube sections of a heat exchange assembly, or in association with a plurality of coolant supply lines or coolant return lines feeding multiple heat exchange assemblies. Flow restrictors associated with respective heat exchange tube sections (or respective heat exchange assemblies) are disposed at the coolant channel inlet or coolant channel outlet of the tube sections (or of the heat exchange assemblies). These flow restrictors tailor coolant flow resistance through the heat exchange tube sections or through the heat exchange assemblies to enhance overall heat transfer within the tube sections or across heat exchange assemblies by tailoring coolant flow. In one embodiment, the flow restrictors tailor a coolant flow distribution differential across multiple heat exchange tube sections or across multiple heat exchange assemblies.
摘要:
Apparatus and method are provided for facilitating air cooling of an electronics rack. The apparatus includes a tile assembly, temperature sensor and controller. The tile assembly is disposed adjacent to the electronics rack, and includes a perforated tile and one or more controllable air-moving devices associated with the perforated tile for moving air through the perforated tile. The temperature sensor is positioned for sensing air temperature adjacent and external to, or within, the electronics rack, and the controller is coupled to the tile assembly and the temperature sensor for controlling operation of the air-moving device. Airflow through the tile assembly is adjusted based on air temperature sensed, thereby facilitating air cooling of the electronics rack. In one embodiment, the tile assembly is a floor tile assembly with an air-to-liquid heat exchanger disposed between the perforated tile and the air-moving device for cooling air passing through the floor tile assembly.
摘要:
An apparatus is provided for facilitating servicing of an electronics rack. The apparatus includes a light source, which includes a plurality of light-emitting diodes. The plurality of light-emitting diodes are secured to the electronics rack or a floor tile disposed adjacent to the electronics rack, and are configured to illuminate at least a lower portion of the electronics rack at either the air inlet or air outlet side of the rack. A power supply is also provided for selectively supplying power to the plurality of light-emitting diodes. In one implementation, the light source includes an elongate light bar, which is configured to mount to either the inlet door or outlet door of the electronics rack, and the plurality of light-emitting diodes are secured to an elongate housing structure which pivotally couples to a base plate for adjustment of a direction of illumination by the light-emitting diodes.
摘要:
An automated method and system are provided for facilitating monitoring of energy usage within a data center. The method includes automatically determining energy usage of one or more electronics racks of a data center by automatically ascertaining time-based energy usage of the electronics racks. The automatically ascertaining includes obtaining multiple measurements of instantaneous energy usage by each of the electronics racks in the data center over a period of time, and then separately averaging the multiple measurements for each electronics rack to obtain the time-based energy usage of each electronics racks. The method also includes outputting the time-based energy usage of the electronic(s) racks to facilitate monitoring of the data center.