摘要:
A composition and method for fabricating high-density Ta—Al—O, Ta—Si—N, and W—Si—N sputtering targets, having particular usefulness for the sputtering of heater layers for ink jet printers. Compositions in accordance with the invention comprise a metal component, Si3N4, and a sintering aid so that the targets will successfully sputter without cracking, etc. The components are combined in powder form and pressure consolidated under heated conditions for a time sufficient to form a consolidated blend having an actual density of greater that about 95% of the theoretical density. The consolidated blend may then be machined so as to provide the final desired target shape.
摘要翻译:用于制造高密度Ta-Al-O,Ta-Si-N和W-Si-N溅射靶的组合物和方法,对于用于喷墨打印机的加热器层的溅射特别有用。 根据本发明的组合物包含金属组分Si 3 N 4 S和烧结助剂,使得靶材将成功地溅射而不会破裂等。组分被组合 粉末形式和压力在加热条件下固化足以形成具有大于理论密度的约95%的实际密度的固结共混物的时间。 然后可以加工固结的混合物以提供最终期望的目标形状。
摘要:
In various embodiments, superconducting wires incorporate diffusion barriers composed of Ta alloys that resist internal diffusion and provide superior mechanical strength to the wires.
摘要:
In various embodiments, superconducting wires incorporate diffusion barriers composed of Ta alloys that resist internal diffusion and provide superior mechanical strength to the wires.
摘要:
In various embodiments, superconducting wires incorporate diffusion barriers composed of Ta alloys that resist internal diffusion and provide superior mechanical strength to the wires.
摘要:
A vacuum seal (1) having an O-ring (12) between two mating parts (2) (6). One of the mating parts has a groove (10) configured to receive the O-ring (12). The groove (10) has a modified dovetail shape with at least one side wall (14) having a compound slope formed with a first portion (22) forming an angle of less than 90 degrees with respect to a base wall (18) and a second portion (24) extending substantially perpendicular to the sealing face (4) of the mating part. The cross-sectional area of the groove is less than 95% of the cross sectional area of the O-ring and the width (W) of the groove mouth (20) is at least 94% of the diameter (D) of the O-ring.
摘要:
This invention provides a sputter target (30) and backing plate (60) assembly having a replaceable sputter target sidewall insert (10). The replaceable sidewall insert (10) enhances the effectiveness and useful life of the assembly by replacing only the insert portion of the sidewall (10) when needed, while retaining the remaining portions of the target (30) for additional use. The sidewall insert (10) is secured to the target (30) and backing plate (60) in corresponding grooves (66) provided in the target (30) and backing plate (60). A textured surface (16) such as a continuous textured coating may be applied to the sidewall insert (10) to further enhance particle retention properties of the target/backing plate assembly.
摘要:
A variable thickness sputtering target which increases the target material thickness at strategic locations to greatly improve the yield of usable wafers per target, and a method of manufacturing such target comprising forming a generally flat and circularly shaped target blank so that a thickness dimension between the top and bottom surfaces decreases as a function of radius of the target blank. The variable thickness target blank is then formed into a variable thickness dome shaped target member having a bottom portion and a sidewall portion, wherein a wall thickness of said variable thickness dome-shaped target member is thickest proximate a center portion of said bottom portion. In one embodiment of the invention, the variable thickness target blank is formed by clock rolling (or compression rolling) the target blank with crowned rolls to obtain a variable thickness target blank.
摘要:
A non-planar sputter target having differing crystallographic orientations in portions of the sputter target surface (25) that promote more desirable deposition and density patterns of material sputtered from the target surface onto a substrate is disclosed. A closed dome (22) end of the sputter target (20) is comprised of a first crystallographic orientation and sidewalls (24) of the sputter target are comprised of a crystallographic orientation different from that of the dome. The sputter target is formed, preferably by hydroforming or other metal working techniques, in the absence of annealing. The hydroforming manipulations result in the different crystallographic orientations while minimizing, or ideally omitting, the application of heat. Quick and cost effective non-planar sputter targets that are easily repeatably producable are achievable as a result. There are vectors (α, β1, β2) in the target.