摘要:
A built-in self-test (BIST) system and method for testing an array of embedded electronic devices, the BIST comprising: a shift register device connected to an output pin of an embedded array of electronic devices being tested and for receiving a failure indication signal at a real-time output pin of the device under test, the shift register generating a unique signature in response to receipt of the failure indication; a device for determining whether the generated unique signature is represented in a table comprising known signature values and corresponding bitmaps of prior determined array defects for that device under test; wherein the need to bitmap the array is avoided when a known failure signature is determined.
摘要:
A method for determining common failure modes of an integrated circuit device under test is disclosed. In an exemplary embodiment of the invention, a test pattern is applied to a series of inputs of the device under test. A set of output data generated by the device under test is then compared to a set of expected data, with the set of output data being generated by the device under test in response to the test pattern. It is then determined whether the set of output data has passed the test, with the set of output data passing the test if the set of output data matches the set of expected data. If the set of output data has not passed the test, then it is determined whether an output signature corresponding to the set of output data matches a previously stored output signature. Fail data corresponding to the output signature is then stored if the output signature matches a previously stored output signature.
摘要:
A method and system for determining minimum post production test time on an integrated circuit device to achieve optimal reliability of that device utilizing defect counts. The number of defective cells or active elements with defective cells (DEFECTS) on the integrated circuit device are counted and this count serves as a basis for determining the minimum test time. A higher number of DEFECTS results in longer post production testing in order to achieve optimum reliability of the integrated circuit device. The number of DEFECTS can be counted on a device internal to the integrated circuit device and made available to determine the minimum required test time. The number of DEFECTS can also be obtained external to the integrated circuit device by intercepting information routed to another device. Information provided internally and externally can also reveal the physical location of DEFECTS to further refine the minimum required test time.