摘要:
Processing engines (PE's) disposed on the substrate. Each processing engine includes a measurement and storage unit, and a PE controller coupled to each of the processing engines. The processing engines perform self-tests and store the results of the self-tests in the measurement and storage unit. The PE controller reads the results and selects a sub-set of processing engines based on the results and an optimization algorithm.
摘要:
A multi-port electronic memory has a write through capability. Control features for enabling a write through path to an output and subsequently disabling without causing data errors due to design and technology variations are provided. Control features are especially beneficial for use with compilable SRAM books.
摘要:
A method for verifying the accuracy of memory testing software is disclosed. A built-in self test (BIST) fail control function is utilized to generate multiple simulated memory fails at various predetermined locations within a memory array of a memory device. The memory array is then tested by a memory tester. Afterwards, a bit fail map is generated by the logical-to-physical mapping software based on all the memory fails indicated by the memory tester. The bit fail map provides all the fail memory locations derived by the logical-to-physical mapping software. The fail memory locations derived by the logical-to-physical mapping software are then compared to the predetermined memory locations to verify the accuracy of the logical-to-physical mapping software.
摘要:
A system and method to optimize multi-core microprocessor performance using voltage offsets is presented. A multi-core device tests each of its processor cores in order to identify each processor core's optimum supply voltage. In turn, the device configures voltage offset networks for each processor core based upon each processor core's identified optimum supply voltage. As a result, the offset voltages produced by the voltage offset networks are subtracted from the multi-core device's main voltage, which results in the voltage offset networks supplying optimum supply voltages to each processor core. The voltage offset networks may include fuses to generate a fixed voltage offset, or the voltage offset networks may include a control circuit to dynamically adjust voltage offsets during the multi-core device's operation.
摘要:
A design structure comprising a differential fuse sensing system, which includes a fuse leg configured for introducing a sense current through an electrically programmable fuse (eFUSE) to be sensed, and a differential sense amplifier having a first input node coupled to the fuse leg and a second node coupled to a reference voltage. The fuse leg further includes a current supply device controlled by a variable reference current generator configured to generate an output signal therefrom such that the voltage on the first input node of the sense amplifier is equal to the voltage on the second input node of the sense amplifier whenever the resistance value of the eFUSE is equal to the resistance value of a programmable variable resistance device included within the variable reference current generator.
摘要:
A design structure comprising a differential fuse sensing system, which includes a fuse leg configured for introducing a sense current through an electrically programmable fuse (eFUSE) to be sensed, and a differential sense amplifier having a first input node coupled to the fuse leg and a second node coupled to a reference voltage. The fuse leg further includes a current supply device controlled by a variable reference current generator configured to generate an output signal therefrom such that the voltage on the first input node of the sense amplifier is equal to the voltage on the second input node of the sense amplifier whenever the resistance value of the eFUSE is equal to the resistance value of a programmable variable resistance device included within the variable reference current generator.
摘要:
A method and system for determining minimum post production test time on an integrated circuit device to achieve optimal reliability of that device utilizing defect counts. The number of defective cells or active elements with defective cells (DEFECTS) on the integrated circuit device are counted and this count serves as a basis for determining the minimum test time. A higher number of DEFECTS results in longer post production testing in order to achieve optimum reliability of the integrated circuit device. The number of DEFECTS can be counted on a device internal to the integrated circuit device and made available to determine the minimum required test time. The number of DEFECTS can also be obtained external to the integrated circuit device by intercepting information routed to another device. Information provided internally and externally can also reveal the physical location of DEFECTS to further refine the minimum required test time.
摘要:
An Array Built-In Self Test (ABIST) circuit places on-chip circuits such as memory arrays in a known state, then stops. In the alternative, the ABIST circuit may initialize to a particular subcycle within a pattern sequence, and repeatedly loop on the subcycle, or repeatedly loop on the entire pattern sequence.