摘要:
A communication device (102), communication node (104), and method for transmitting a message are disclosed. The method includes calculating number of frames (402) in a message to be transmitted from the communication device. The method further includes determining transmission power (404) for the message based on the number of frames. The method further includes transmitting each frame of the message (406) using the determined transmission power.
摘要:
An RF power fairness method (26) receives a request for supplemental channel resources (160). If sufficient supplemental channel resources (time slots and data rates) are not available, the original request is modified (166). If there is multiple call activity on the supplemental channel, RF power is calculated for each of the simultaneous calls on the shared channel (202, 208). If successful time slots and data rates are found, a grant message is returned from the time slot manager (26) to the base station (164, 170, 180). If insufficient time slots and data rate power are determined, a deny request message is transmitted to the base station (184).
摘要:
A method (30) schedules the utilization of the supplemental channel of a base station transceiver (20-25). This scheduling includes time slot assignment as well as data transfer rate per time slot. One method simply selects the next time slot with a maximum rate for the primary base station transceiver (130). The method then selects the same time slot for each of the secondary links with the secondary base stations (132). The data is then simply sent to each of the BTSs (20-25) for transmission to the mobile station (10). In another alternative, a request is made for a supplemental channel usage for the primary link (144). Then secondary links are selected for transmission to the mobile station (10) only if they provide additional diversity gain (148) and resources are available at the secondary link BTSs.
摘要:
A method of selective need-based control message augmentation may include a network unit of a mobile communication system (100) generating a control message (250) for communication to a mobile unit (202), determining a handoff state transition of the mobile unit, and determining a set of signal conditions for one or more legs of an active set associated with the mobile unit. Further, the network unit at least one of selectively fast repeating the control message and selectively increasing the power gain for the control message based on the handoff state transition and the set of signal conditions.
摘要:
This method (110) adaptively sends control messages and a predetermined number of fast repeats of the control messages on the traffic channel of a mobile communication system. For a control message which has already been lost (118), the system sends the control message again with a first number of fast repeats (130) if the traffic channel is operating at a full rate; and the system sends the control message with a second number of fast repeats if the traffic channel is operating at a subrate. The number of fast repeats is selectable. If the control message has not been previously sent and the traffic channel is operating at a subrate (124), the system will send the control message with a third number of fast repeats (128).
摘要:
A method for adaptive power control in a mobile communication system (100) determines (120) whether an RF loading factor (110) is greater than a threshold value. If the RF loading factor is above the threshold value, the method reduces call quality (140). Next, a determination is made whether the RF loading factor is below a second threshold value (150). If the RF loading factor is below the second threshold value, the call quality of the mobile communication system is increased (160).
摘要:
A method of increasing satellite communication quality by using a MEO satellite constellation (12) and a LEO satellite constellation (14) in combination with a decision algorithm which selects the appropriate constellation to route a communication signal through. The decision algorithm can be embodied in three ways: gateway based (18), individual subscriber unit based (22) and satellite based (12, 14). The MEO constellation (12) and LEO (14) constellation may be cross-linked, allowing for switching of service between satellites, as needed, during a communication session.
摘要:
In a wireless communication system, a method includes assigning an initial portion of a list of resource block group for each of a plurality of cells such that the resource block groups are spread across the plurality of cells in a non-contiguous order spaced out in frequency. In addition, the method assigns a secondary portion of the list of resource block groups for each of a plurality of cells wherein the secondary portion is assigned in a reverse order and alternating from the initial portion of the list of resource block groups of each of the other plurality of cells.
摘要:
A method and corresponding entity for providing phone book forwarding list in a communication system (100) is described. The method comprises of receiving at a first mobile device (106) a notification message from a second mobile device (108). The notification message includes an identity of the second mobile device (108). The method includes registering the identity of the second mobile device (108) in a phone book forwarding list (222) of the first mobile device (106). The method further comprises sending the phone book forwarding list (222) when the first mobile device (106) receives a paging signal. The phone book forwarding list (222) is further utilized for forwarding the call to the second mobile device (108) when a communication session is not established with the first mobile device (106).
摘要:
A communications platform (100) assigns communication channels (58, 78) to users based on a power level associated with the individual users. An available bandwidth for use by the communications platform (100) in segmented into a number of sub-bands using a bank of filters (54, 78). A number of independent communication channels (58, 78) are then provided within each of the sub-bands using an appropriate multiple access scheme (e.g., code division multiple access). A power range is then specified for each of the sub-bands. When a communication connection is to be established, a power level associated with the connection is determined. One or more sub-bands are then identified that have power ranges encompassing the determined power level. A channel is then assigned to the communication connection from one of the identified sub-bands.