Abstract:
Systems and methods for an edge of network voltage control of a power grid are described. In some embodiments, a system comprises a distribution power network, a plurality of loads, and a plurality of shunt-connected, switch-controlled VAR sources. The loads may be at or near an edge of the distribution power network. Each of the loads may receive power from the distribution power network. The plurality of shunt-connected, switch-controlled VAR sources may be located at the edge or near the edge of the distribution power network where they may each detect a proximate voltage. Further, each of the VAR sources may comprise a processor and a VAR compensation component. The processor may be configured to enable the VAR source to determine whether to enable the VAR compensation component based on the proximate voltage and to adjust network volt-ampere reactive by controlling a switch to enable the VAR compensation component.
Abstract:
Systems and methods for an edge of network voltage control of a power grid are described. In some embodiments, a system comprises a distribution power network, a plurality of loads, and a plurality of shunt-connected, switch-controlled VAR sources. The loads may be at or near an edge of the distribution power network. Each of the loads may receive power from the distribution power network. The plurality of shunt-connected, switch-controlled VAR sources may be located at the edge or near the edge of the distribution power network where they may each detect a proximate voltage. Further, each of the VAR sources may comprise a processor and a VAR compensation component. The processor may be configured to enable the VAR source to determine whether to enable the VAR compensation component based on the proximate voltage and to adjust network volt-ampere reactive by controlling a switch to enable the VAR compensation component.
Abstract:
Various systems and methods are provided for minimizing an inrush current to a load after a voltage sag in a power voltage. In one embodiment, a method is provided comprising the steps of applying a power voltage to a load, and detecting a sag in the power voltage during steady-state operation of the load. The method includes the steps of adding an impedance to the load upon detection of the sag in the power voltage, and removing the impedance from the load when the power voltage has reached a predefined point in the power voltage cycle after the power voltage has returned to a nominal voltage.
Abstract:
Floating electrically isolated active impedance modules are formed to attach to power transmission lines without breaking the lines such that the power line forms a secondary of the main transformer of the module. Each module includes an electrical energy storage device and a switching circuit, such as a single phase inverter, connected to the storage device and to the main transformer primary winding. The inverter can be controlled to couple a selected voltage to the transmission line through the main transformer primary winding which can provide effective positive impedance, negative impedance, or a voltage at or near phase quadrature with the line current. Many active impedance modules may be distributed over a power system grid to allow control of the impedance of the power lines in the grid and to steer power through the grid, with each module electrically isolated from ground and from other phase lines of the transmission system.
Abstract:
Various systems and methods are provided for minimizing an inrush current to a load after a voltage sag in a power voltage. In one embodiment, a method is provided comprising the steps of applying a power voltage to a load, and detecting a sag in the power voltage during steady-state operation of the load. The method includes the steps of adding an impedance to the load upon detection of the sag in the power voltage, and removing the impedance from the load when the power voltage has reached a predefined point in the power voltage cycle after the power voltage has returned to a nominal voltage.
Abstract:
Various systems and methods are provided for minimizing an inrush current to a load after a voltage sag in a power voltage. In one embodiment, a method is provided comprising the steps of applying a power voltage to a load, and detecting a sag in the power voltage during steady-state operation of the load. The method includes the steps of adding an impedance to the load upon detection of the sag in the power voltage, and removing the impedance from the load when the power voltage has reached a predefined point in the power voltage cycle after the power voltage has returned to a nominal voltage.
Abstract:
Various systems and methods are provided for minimizing an inrush current to a load after a voltage sag in a power voltage. In one embodiment, a method is provided comprising the steps of applying a power voltage to a load, and detecting a sag in the power voltage during steady-state operation of the load. The method includes the steps of adding an impedance to the load upon detection of the sag in the power voltage, and removing the impedance from the load when the power voltage has reached a predefined point in the power voltage cycle after the power voltage has returned to a nominal voltage.
Abstract:
Various systems and methods are provided for minimizing an inrush current to a load after a voltage sag in a power voltage. In one embodiment, a method is provided comprising the steps of applying a power voltage (100) to a load (246), and detecting a sag in the power voltage (106) during steady-state operation of the load. The method includes the steps of adding an impedance (RT) to the load upon detection of the sag in the power voltage, and removing the impedance when the power voltage has reached a predetermined point in the power voltage cycle after the voltage has returned to normal.
Abstract:
A system and method for determining non-linear load harmonics impact on the voltage distortion at the point of common coupling is disclosed. Briefly described, one embodiment is a method comprising metering voltage on an electric power system; metering current on the electric power system; determining a predicted voltage based upon the metered current; comparing the predicted voltage with the metered voltage; and determining a harmonic voltage component using a plurality of weights determined when the predicted voltage converges with the metered voltage.
Abstract:
Various systems and methods are provided for minimizing an inrush current to a load after a voltage sag in a power voltage. In one embodiment, a method is provided comprising the steps of applying a power voltage to a load, and detecting a sag in the power voltage during steady-state operation of the load. The method includes the steps of adding an impedance to the load upon detection of the sag in the power voltage, and removing the impedance from the load when the power voltage has reached a predefined point in the power voltage cycle after the power voltage has returned to a nominal voltage.