摘要:
In a programming operation, selected storage elements which reach a lockout condition are subject to reduced channel boosting in a program portion of the next program-verify iteration, to reduce coupling effects on the storage elements which continue to be programmed. In subsequent program-verify iterations, the locked out storage elements are subject to full channel boosting. Or, the boosting can be stepped up over multiple program-verify iterations after lockout. The amount of channel boosting can be set by adjusting the timing of a channel pre-charge operation and by stepping up pass voltages which are applied to unselected word lines. The reduced channel boosting can be implemented for a range of program-verify iterations where the lockout condition is most likely to be first reached, for one or more target data states.
摘要:
Program disturb is reduced in a non-volatile storage system by programming storage elements on a selected word line WLn in separate groups, according to the state of their WLn−1 neighbor storage element, and applying an optimal pass voltage to WLn−1 for each group. Initially, the states of the storage elements on WLn−1 are read. A program iteration includes multiple program pulses. A first program pulse is applied to WLn while a first pass voltage is applied to WLn−1, a first group of WLn storage elements is selected for programming, and a second group of WLn storage elements is inhibited. Next, a second program pulse is applied to WLn while a second pass voltage is applied to WLn−1, the second first group of WLn storage elements is selected for programming, and the first group of WLn storage elements is inhibited. A group can include one or more data states.
摘要:
Program disturb is reduced in a non-volatile storage system by programming storage elements on a selected word line WLn in separate groups, according to the state of their WLn−1 neighbor storage element, and applying an optimal pass voltage to WLn−1 for each group. Initially, the states of the storage elements on WLn−1 are read. A program iteration includes multiple program pulses. A first program pulse is applied to WLn while a first pass voltage is applied to WLn−1, a first group of WLn storage elements is selected for programming, and a second group of WLn storage elements is inhibited. Next, a second program pulse is applied to WLn while a second pass voltage is applied to WLn−1, the second first group of WLn storage elements is selected for programming, and the first group of WLn storage elements is inhibited. A group can include one or more data states.
摘要:
In a programming operation, selected storage elements which reach a lockout condition are subject to reduced channel boosting in a program portion of the next program-verify iteration, to reduce coupling effects on the storage elements which continue to be programmed. In subsequent program-verify iterations, the locked out storage elements are subject to full channel boosting. Or, the boosting can be stepped up over multiple program-verify iterations after lockout. The amount of channel boosting can be set by adjusting the timing of a channel pre-charge operation and by stepping up pass voltages which are applied to unselected word lines. The reduced channel boosting can be implemented for a range of program-verify iterations where the lockout condition is most likely to be first reached, for one or more target data states.
摘要:
Capacitive coupling from storage elements on adjacent bit lines is compensated by adjusting voltages applied to the adjacent bit lines. An initial rough read is performed to ascertain the data states of the bit line-adjacent storage elements, and during a subsequent fine read, bit line voltages are set based on the ascertained states and the current control gate read voltage which is applied to a selected word line. When the current control gate read voltage corresponds to a lower data state than the ascertained state of an adjacent storage element, a compensating bit line voltage is used. Compensation of coupling from a storage element on an adjacent word line can also be provided by applying different read pass voltages to the adjacent word line, and obtaining read data using a particular read pass voltage which is identified based on a data state of the word line-adjacent storage element.
摘要:
Program disturb is reduced in a non-volatile storage system by programming storage elements on a selected word line WLn in separate groups, according to the state of their WLn−1 neighbor storage element, and applying an optimal pass voltage to WLn−1 for each group. Initially, the states of the storage elements on WLn−1 are read. A program iteration includes multiple program pulses. A first program pulse is applied to WLn while a first pass voltage is applied to WLn−1, a first group of WLn storage elements is selected for programming, and a second group of WLn storage elements is inhibited. Next, a second program pulse is applied to WLn while a second pass voltage is applied to WLn−1, the second first group of WLn storage elements is selected for programming, and the first group of WLn storage elements is inhibited. A group can include one or more data states.
摘要:
Program disturb is reduced in a non-volatile storage system by programming storage elements on a selected word line WLn in separate groups, according to the state of their WLn−1 neighbor storage element, and applying an optimal pass voltage to WLn−1 for each group. Initially, the states of the storage elements on WLn−1 are read. A program iteration includes multiple program pulses. A first program pulse is applied to WLn while a first pass voltage is applied to WLn−1, a first group of WLn storage elements is selected for programming, and a second group of WLn storage elements is inhibited. Next, a second program pulse is applied to WLn while a second pass voltage is applied to WLn−1, the second first group of WLn storage elements is selected for programming, and the first group of WLn storage elements is inhibited. A group can include one or more data states.
摘要:
Capacitive coupling from storage elements on adjacent bit lines is compensated by adjusting voltages applied to the adjacent bit lines. An initial rough read is performed to ascertain the data states of the bit line-adjacent storage elements, and during a subsequent fine read, bit line voltages are set based on the ascertained states and the current control gate read voltage which is applied to a selected word line. When the current control gate read voltage corresponds to a lower data state than the ascertained state of an adjacent storage element, a compensating bit line voltage is used. Compensation of coupling from a storage element on an adjacent word line can also be provided by applying different read pass voltages to the adjacent word line, and obtaining read data using a particular read pass voltage which is identified based on a data state of the word line-adjacent storage element.
摘要:
High-density semiconductor memory utilizing metal control gate structures and air gap electrical isolation between discrete devices in these types of structures are provided. During gate formation and definition, etching the metal control gate layer(s) is separated from etching the charge storage layer to form protective sidewall spacers along the vertical sidewalls of the metal control gate layer(s). The sidewall spacers encapsulate the metal control gate layer(s) while etching the charge storage material to avoid contamination of the charge storage and tunnel dielectric materials. Electrical isolation is provided, at least in part, by air gaps that are formed in the row direction and/or air gaps that are formed in the column direction.
摘要:
A process for programming non-volatile storage is able to achieve faster programming speeds and/or more accurate programming through synchronized coupling of neighboring word lines. The process for programming includes raising voltages for a set of word lines connected a group of connected non-volatile storage elements. The set of word lines include a selected word line, unselected word lines that are adjacent to the selected word line and other unselected word lines. After raising voltages for the set of word lines, the process includes raising the selected word line to a program voltage and raising the unselected word lines that are adjacent to the selected word line to one or more voltage levels concurrently with the raising the selected word line to the program voltage. The program voltage causes at least one of the non-volatile storage elements to experience programming.