Abstract:
An air conditioner is provided that includes an outer circulation unit. The outer circulation unit includes an outer circulation housing, an outer circulation inlet, an outer circulation outlet, and a condenser. The outer circulation inlet is formed on the outer circulation housing. The outer circulation outlet is formed on the outer circulation housing. An outer circulation flow enters the outer circulation unit via the outer circulation inlet, passes through the condenser to remove heat from the condenser, and leaves the outer circulation unit via the outer circulation outlet, wherein the height of the outer circulation inlet is higher than the height of the outer circulation outlet in a vertical direction.
Abstract:
A variable-frequency motor device that runs on alternating current includes a first converting circuit, a second converting circuit, and a DC variable-frequency motor. An operation module is coupled to the variable-frequency motor device, and provides the alternating current to the first or second converting circuit. The first converting circuit receives the alternating current, and generates a first rotation-speed signal. The second converting circuit receives the alternating current, and generates a second rotation-speed signal. The DC variable-frequency motor is driven at a rotation speed according to the first or second rotation-speed signal.
Abstract:
A DC motor device includes a first converting circuit, a second converting circuit, and a DC motor. A switch element is coupled to the DC motor device, and provides an alternating current to the first or second converting circuit. The first converting circuit receives the alternating current, and generates a first rotation speed signal. The second converting circuit receives the alternating current, and generates a second rotation speed signal. The DC motor is driven at a rotation speed according to the first or second rotation speed signal.
Abstract:
A heat-exchange apparatus is provided, including a first heat exchanger, a second heat exchanger, a third heat exchanger and a fourth heat exchanger. The first heat exchanger is thermally separated from the second heat exchanger. The third heat exchanger is thermally connected to the first heat exchanger. The fourth heat exchanger is thermally connected to the second heat exchanger, wherein a first air flow passes through the first heat exchanger and the second heat exchanger to be divided into a first divergent flow and a second divergent flow, the first divergent flow flows on a surface of the first heat exchanger, the second divergent flow flows on a surface of the second heat exchanger, the first divergent flow does not flow on the surface of the second heat exchanger, and the second divergent flow does not flow on the surface of the first heat exchanger.
Abstract:
A heat-exchange apparatus is provided, including a first heat exchanger, a second heat exchanger, a third heat exchanger and a fourth heat exchanger. The first heat exchanger is thermally separated from the second heat exchanger. The third heat exchanger is thermally connected to the first heat exchanger. The fourth heat exchanger is thermally connected to the second heat exchanger, wherein a first air flow passes through the first heat exchanger and the second heat exchanger to be divided into a first divergent flow and a second divergent flow, the first divergent flow flows on a surface of the first heat exchanger, the second divergent flow flows on a surface of the second heat exchanger, the first divergent flow does not flow on the surface of the second heat exchanger, and the second divergent flow does not flow on the surface of the first heat exchanger.
Abstract:
A refrigeration cabinet includes a freezing compartment, a first evaporator and a second evaporator. The freezing compartment includes a freezing compartment door, and the first evaporator and the second evaporator are both equipped in the freezing compartment. The first evaporator is turned off and a second evaporator is working while the freezing compartment door is opened. In addition, a refrigeration cabinet operation method is also disclosed herein.
Abstract:
A temperature-regulated cabinet (10) includes a cabinet body (1) and a temperature regulating module (2). The cabinet body (1) has a containing space (11) formed inside the cabinet body (1) and an opening (12) communicated with the containing space (11). The temperature regulating module (2) is detachably installed to the cabinet body (1) and covered onto the opening (12) and includes a temperature regulator (21), a first hood (22), a second hood (23) and an exhaust fan (24). The temperature regulator (21) has a casing (211). The first hood (22) is detachably installed to the top of the casing (211), and the second hood (23) is detachably installed to the bottom of the casing (211). The exhaust fan (24) is installed inside the first hood (22) or the second hood (23). The cabinet has the advantages of simplifying the production line and lowering the construction and operation costs.
Abstract:
A heat exchanging module comprises a casing, a plurality of first air guiding elements and a plurality of first separation elements. The first air guiding elements are disposed in the casing. Each of the first air guiding elements comprises a plurality of first structures and a plurality of second structures, the first structures are disposed parallelly, and the second structures are disposed between the first structures and connected with the first structures to form a plurality of first channels. Each of the first separation elements is disposed between the two adjacent first air guiding elements to form a second channel. An airflow direction of the first channels is different from that of the second channels. The present invention further provides an electronic device using the same.