摘要:
A new liquid crystalline light modulating cell and material are characterized by liquid crystalline light modulating material of liquid crystal and polymer, the liquid crystal being a chiral nematic liquid crystal having positive dielectric anisotropy and including chiral material in an amount effective to form focal conic and twisted planar textures, the polymer being distributed in phase separated domains in the liquid crystal cell in an amount that stabilizes the focal conic and twisted planar textures in the absence of a field and permits the liquid crystal to change textures upon the application of a field. In one embodiment, the material is light scattering in a field-OFF condition and optically clear in a field-ON condition, while in another embodiment, the material is optically clear in a field-OFF condition and light scattering in a field-ON condition. In still another embodiment, the material exhibits stability at zero field in a colored, light reflecting state, a light scattering state and multiple stable reflecting state therebetween, as well as being optically clear in the presence of a field. This embodiment allows for a display with a substantially white background with substantially black characters much like a printed page. In yet another embodiment, the application of mechanical force to the cell changes the material from an optically clear state to a light reflecting state.
摘要:
The invention provides a liquid crystal (LC) composition, a LC device such as a liquid crystal display and a phase modulator, and a method thereof. The liquid crystal composition comprises a liquid crystal and a polymer. The liquid crystal exhibits a macroscopic anisotropic property such as optical property in the absence of the polymer under a condition such as certain temperature. The polymer in the composition stabilizes the liquid crystal so that the liquid crystal exhibits a macroscopic isotropic property under the same condition, and the liquid crystal stabilized by the polymer exhibits the macroscopic anisotropic property when an electrical field is applied thereon. The devices exhibit technical merits such as large viewing angle, fast response time, better contrast ratio, easy manufacturability of large size display with improved dark state, easy manufacturing process with wider temperature region, and polarization-insensitivity of PSI phase modulator, among others.
摘要:
A series of drive schemes are used to apply a single phase of at least one voltage pulse to drive a display with a bistable cholesteric liquid crystal material to a gray scale reflectance. Each drive scheme takes into consideration the initial texture of the cholesteric material and the range of voltages that may be applied between maximum and minimum reflectance of the material. Application of the single phase can be implemented by either time modulation or amplitude modulation.
摘要:
A new liquid crystalline light modulating cell and material are characterized by liquid crystalline light modulating material of liquid crystal and polymer, the liquid crystal being a chiral nematic liquid crystal having positive dielectric anisotropy and including chiral material in an amount effective to form focal conic and twisted planar textures, the polymer being distributed in phase separated domains in the liquid crystal cell in an amount that permits the liquid crystal to change textures upon the application of a field and ruggedizes the structure. In still another embodiment, the material exhibits stability at zero field in a colored, light reflecting state, a light scattering state and multiple stable reflecting state therebetween, as well as being optically clear in the presence of a field. In yet another embodiment, the application of mechanical force to the cell changes the material from an optically clear state to a light reflecting state.
摘要:
A polarizing waveguide plate includes a pair of spaced transparent plates that define a gap therebetween. Disposed within the gap is a composite material formed of a mixture of polymer mater and liquid crystal material. Positioned proximate to one edge of the gap is an edge light, while a reflector/converter is positioned proximate to another edge of the gap. During operation, unpolarized light is emitted from the edge light and is received within the gap. As such, a portion of the light polarized in a first direction is permitted to exit the waveguide, while the remaining portion of the light that is polarized in a second direction, orthogonal to the first direction, is converted by the converter/reflector so that its polarization is also in the first direction. As such, substantially all of the unpolarized light from the edge light is emitted by the polarizing waveguide plate as polarized light.
摘要:
A bi-stable active matrix (AM) display apparatus and a method for driving a display panel thereof are provided. The bi-stable AM display apparatus includes a bi-stable AM display panel, a scan driver, a data driver and a controller. A frame period is divided into a resetting phase and a determining phase. The controller resets pixels on a plurality of scan lines of the bi-stable AM display panel to a homotropic state in the resetting phase through the scan driver and the data driver. The controller writes frame information into the pixels on the scan lines in the determining phase through the scan driver and the data driver.
摘要:
Bistable cholesteric liquid crystal material is disposed between opposed substrates, wherein one of the substrates has a first plurality of electrodes facing a second plurality of electrodes on the other substrate, wherein the intersection of the first and the second plurality of electrodes forms a plurality of pixels. The material is addressed by applying a preparation voltage across the first and second plurality of electrodes and then subsequently applying a selection voltage across the first and second plurality of electrodes. The material is then allowed to relax for a period of time, whereupon the preparation and selection voltages are reapplied. These steps are repeated until the liquid crystal material obtains the desired reflectance.
摘要:
A liquid crystal shutter and a drive waveform for controlling the same is presented by this invention. The liquid crystal shutter includes two distinct layers of liquid crystal material where one layer has a right hand twist sense and the other layer has a left hand twist sense. An electric field is selectively applied to the layers of liquid crystal material which have dual frequency properties. Accordingly, when a low frequency is applied to the liquid crystal materials they exhibit a positive dielectric anisotropy and a homeotropic texture which is substantially transparent. When a high frequency electric field is applied to the liquid crystal materials they exhibit a negative dielectric anisotropy and a planar texture which is substantially reflective. The liquid crystal material may be selected to selectively reflect predetermined spectrums of light. By alternatingly applying low and high frequencies to the liquid crystal shutter, the transition time between the transparent and reflective states is minimized.
摘要:
An encapsulated polymer stabilized cholesteric texture (EPSCT) light shutter is formed from a cholesteric liquid crystal and monomer that is encapsulated into micron sized, polymer-coated droplets by either an emulsification or phase separation process. The polymer-coated droplets are disposed between transparent electrodes, where they are irradiated by ultra-violet (UV) light to polymerize the monomer.
摘要:
A device and method of manufacturing a single layer multi-state ultra-fast cholesteric liquid crystal includes two optically transparent states with a liquid crystal arranged therebetween, and changing the optical states of the liquid crystal ranging from one state to any combination of broadband reflection, tunable narrow band reflection, light scattering, and transparency in accordance with a voltage applied to the device. A surfactant can be added to reduce the response time and a dichroic dye may be added to include the property of light absorption and reduce the bandwidth. The device can provide any and all of the aforementioned optical states for infrared light, visible light, and ultra-violet light. The desired outputs can be formed according to need, so that predetermined optical states can operate with either no voltage or a particular voltage or voltage range.