摘要:
A method of producing an active material for a lithium secondary battery, by which impurities causing problems in synthesizing an active material for a lithium secondary battery, including a lithium transition metal oxyanion compound are removed efficiently and enhancement of an energy density is realized, is provided. By cleaning the active material for a lithium secondary battery, including a lithium transition metal oxyanion compound, with a pH buffer solution, for example, it is possible to efficiently remove just only impurities such as Li3PO4 or Li2CO3, or a substance, other than LiFePO4, in which the valence of Fe is bivalent such as FeSO4, FeO or Fe3(PO4)2 without dissolving Fe of LiFePO4.
摘要翻译:提供一种生产用于锂二次电池的活性材料的方法,其中提供了有效地除去包含锂过渡金属氧阴离子化合物的锂二次电池的活性材料合成的问题的杂质并实现能量密度的提高 。 通过例如利用pH缓冲溶液清洗包含锂过渡金属氧阴离子化合物的锂二次电池的活性物质,可以仅仅有效地除去Li 3 PO 4或Li 2 CO 3等杂质,或除了LiFePO 4以外的物质 ,其中铁的价数是二价的,如FeSO 4,FeO或Fe 3(PO 4)2,而不溶解LiFePO 4的Fe。
摘要:
A method of producing an active material for a lithium secondary battery, by which impurities causing problems in synthesizing an active material for a lithium secondary battery, including a lithium transition metal oxyanion compound are removed efficiently and enhancement of an energy density is realized, is provided. By cleaning the active material for a lithium secondary battery, including a lithium transition metal oxyanion compound, with a pH buffer solution, for example, it is possible to efficiently remove just only impurities such as Li3PO4 or Li2CO3, or a substance, other than LiFePO4, in which the valence of Fe is bivalent such as FeSO4, FeO or Fe3(PO4)2 without dissolving Fe of LiFePO4.
摘要翻译:提供一种生产用于锂二次电池的活性材料的方法,其中提供了有效地除去包含锂过渡金属氧阴离子化合物的锂二次电池的活性材料合成的问题的杂质并实现能量密度的提高 。 通过例如利用pH缓冲溶液清洗包含锂过渡金属氧阴离子化合物的锂二次电池的活性物质,可以仅仅有效地除去Li 3 PO 4或Li 2 CO 3等杂质,或除了LiFePO 4以外的物质 ,其中铁的价数是二价的,如FeSO 4,FeO或Fe 3(PO 4)2,而不溶解LiFePO 4的Fe。
摘要:
A method of producing an active material for a lithium secondary battery, by which impurities causing problems in synthesizing an active material for a lithium secondary battery, including a lithium transition metal oxyanion compound are removed efficiently and enhancement of an energy density is realized, is provided. By cleaning the active material for a lithium secondary battery, including a lithium transition metal oxyanion compound, with a pH buffer solution, for example, it is possible to efficiently remove just only impurities such as Li3PO4 or Li2CO3, or a substance, other than LiFePO4, in which the valence of Fe is bivalent such as FeSO4, FeO or Fe3(PO4)2 without dissolving Fe of LiFePO4.
摘要:
A non-aqueous electrolyte secondary battery has a negative electrode, a non-aqueous electrolyte, and a positive electrode containing a positive electrode active material composed of an olivine lithium-containing metal phosphate represented by the general formula LixMPO4, where M is at least one element selected from the group consisting of Co, Ni, Mn, and Fe, and 0
摘要:
A non-aqueous battery with improved volume energy density and enhanced load characteristics is made available even when using olivine-type lithium phosphate as a positive electrode active material.The non-aqueous electrolyte battery of the present invention is provided with a positive electrode (1) containing lithium iron phosphate as a positive electrode active material, a negative electrode (2), and a non-aqueous electrolyte (4). In the positive electrode (1), a positive electrode active material-containing layer that is made of the positive electrode active material, a conductive agent, and a binder agent is formed on a positive electrode current collector. The positive electrode current collector has a thickness of less than 20 μm and its surface that is in contact with the positive electrode active material-containing layer has a mean surface roughness Ra of greater than 0.026.
摘要:
A method for manufacturing a positive electrode active material for a nonaqueous electrolyte secondary battery including the steps of mixing a lithium source and a tetravalent manganese source and reacting the lithium source and the manganese source at a temperature lower than 600° C. while tetravalent manganese is reduced, so as to produce a lithium manganese compound oxide, wherein the positive electrode active material is formed from the lithium manganese compound oxide where the lithium manganese compound oxide is represented by a general formula LixMnO2 (x≧1) and which has a crystal structure of a space group C2/m.
摘要:
A nonaqueous electrolyte secondary battery that even at high-rate discharge wherein discharge is carried out at relatively large current, can attain an increase of discharge capacity. There is provided a nonaqueous electrolyte secondary battery comprising positive electrode (2), the positive electrode (2) including a collector and, superimposed thereon, a mixture layer containing a positive electrode active material in which lithium iron phosphate (LiFePO4) is contained, a conductive agent and a binder, the mixture layer exhibiting a mixture packing density after electrode formation of ≧1.7 g/cm3, and further comprising nonaqueous electrolyte (5) containing a solvent in which ethylene carbonate and a linear ether such as 1,2-dimethoxyethane are contained.
摘要翻译:即使在相对大的电流下进行放电的高速率放电的非水电解质二次电池也能够实现放电容量的增加。 提供一种非水电解质二次电池,其包括正极(2),所述正极(2)包括集电体,并且叠加在其上,包含含有磷酸铁锂(LiFePO 4)的正极活性物质的混合层, 导电剂和粘合剂,所述混合物层在电极形成之后表现出混合物填充密度> = 1.7g / cm 3,并且还包含含有其中碳酸亚乙酯和直链醚如1,2-二氯乙烷的溶剂的非水电解质(5) 二甲氧基乙烷。
摘要:
Using a non-aqueous electrolyte secondary battery containing lithium iron phosphate as a positive electrode active material and graphite as a negative electrode active material, a low-cost, high energy density battery is provided that exhibits good performance at high rate current and good cycle performance even at high temperature. The non-aqueous electrolyte secondary battery has a positive electrode having a positive electrode current collector and a positive electrode active material-containing layer formed on a surface of the positive electrode current collector, the positive electrode active material-containing layer containing a conductive agent and a positive electrode active material including lithium iron phosphate, a negative electrode containing a carbon material, and a non-aqueous electrolyte. The non-aqueous electrolyte contains vinylene carbonate.
摘要:
A non-aqueous battery with improved volume energy density and enhanced load characteristics is made available even when using olivine-type lithium phosphate as a positive electrode active material.The non-aqueous electrolyte battery of the present invention is provided with a positive electrode (1) containing lithium iron phosphate as a positive electrode active material, a negative electrode (2), and a non-aqueous electrolyte (4). In the positive electrode (1), a positive electrode active material-containing layer that is made of the positive electrode active material, a conductive agent, and a binder agent is formed on a positive electrode current collector. The positive electrode current collector has a thickness of less than 20 μm and its surface that is in contact with the positive electrode active material-containing layer has a mean surface roughness Ra of greater than 0.026.
摘要:
Using a non-aqueous electrolyte secondary battery containing lithium iron phosphate as a positive electrode active material and graphite as a negative electrode active material, a low-cost, high energy density battery is provided that exhibits good performance at high rate current and good cycle performance even at high temperature. The non-aqueous electrolyte secondary battery has a positive electrode having a positive electrode current collector and a positive electrode active material-containing layer formed on a surface of the positive electrode current collector, the positive electrode active material-containing layer containing a conductive agent and a positive electrode active material including lithium iron phosphate, a negative electrode containing a carbon material, and a non-aqueous electrolyte. The non-aqueous electrolyte contains vinylene carbonate.