Abstract:
Personal treatment compositions including cleansing and/or cosmetic compositions are disclosed, the cleansing compositions, for example, comprising from about 0.001% to about 10%, preferably from about 0.005% to about 6%, enduring perfume; from about 0.01% to about 95% surfactant system; and the balance carrier. The enduring perfume provides a lasting olfactory sensation thus minimizing the need to use large amounts. Preferred compositions are liquid and comprise water as a carrier.
Abstract:
Improved solid particulate, granular fabric softening compositions contain biodegradable cationic ester fabric softener actives, especially quaternary ammonium softeners containing two long hydrophobic chains interrupted by ester linkages, and acidic pH modifier, in an effective amount to provide a pH, when the particulate compositions are diluted with water to make liquid softener compositions, of from about 2 to about 5. The solid particulate, granular fabric softening compositions, when added to water, form chemically stable dilute, or concentrated liquid, softener compositions.
Abstract:
Fabric softening compositions, preferably in liquid form, for use in the rise cycle of home laundry operations are improved by: (a) using certain protected water sensitive materials, especially particulate complexes of cyclodextrins and perfumes, which are protected in fabric softening compositions and/or detergent compositions, by e.g., imbedding said particulate complex in relatively high melting protective material that is substantially water-insoluble and, preferably, non-water-swellable and is solid at normal storage conditions, but which melts at the temperatures encountered in automatic fabric dryers (laundry dryers); (b) using soil release polymers to help suspend water-insoluble particles in aqueous fabric softening compositions: and/or (c) preparing the said protected particulate water sensitive materials (complexes) by melting the said high melting materials, dispersing the said particulate complexes, or other water sensitive material, in the molten high melting protective material and dispersing the resulting molten mixture in aqueous media, especially surfactant solution or aqueous fabric softener composition, and cooling to form small, smooth, spherical particles of the particulate complexes, or other water sensitive material, substantially protected by the high melting material.
Abstract:
The present invention relates to a fabric softening bar composition comprising: from about 40% to about 90% by weight of the composition of a hydrophobic fabric softening compound, from about 0.1% to about 10% of an enduring perfume composition, and optionally, but preferably, from about 5% to about 30% by weight of the composition of a nonionic surfactant, and from about 5% to about 30% by weight of the composition, water. These compositions are low sudsing, low lathering, non-detersive fabric softening compositions which provide long lasting perfume effects.
Abstract:
Fabric softening compositions, preferably in liquid form, for use in the rinse cycle of home laundry operations are improved by: (a) using certain protected water sensitive materials, especially particulate complexes of cyclodextrins and perfumes, which are protected in fabric softening compositions and/or detergent compositions, by e.g., imbedding said particulate complex in relatively high melting protective material that is substantially water-insoluble and, preferably, non-water-swellable and is solid at normal storage conditions, but which melts at the temperatures encountered in automatic fabric dryers (laundry dryers); (b) using soil release polymers to help suspend water-insoluble particles in aqueous fabric softening compositions; and/or (c) preparing the said protected particulate water sensitive materials (complexes) by melting the said high melting materials, dispersing the said particulate complexes, or other water sensitive material, in the molten high melting protective material and dispersing the resulting molten mixture in aqueous media, especially surfactant solution or aqueous fabric softener composition, and cooling to form small, smooth, spherical particles of the particulate complexes, or other water sensitive material, substantially protected by the high melting material.
Abstract:
A detergent composition containing efficient enduring perfume composition is provided. Specifically, the detergent composition comprises: a perfume composition comprising at least about 70% of enduring perfume ingredients characterized by having boiling points, measured at the normal, standard pressure, of about 250.degree. C. or higher, and an octanol/water partitioning coefficent P of about 1,000 or higher, i.e., having a logP, or calculated logP, of about 3 or higher. The perfume is substantially free of halogenated fragrance materials and nitromusks. The composition also contains from about 0.01% to about 95% of a detergent surfactant system, preferably containing anionic and/or nonionic detergent surfactants. The compositions can be in the form of granules, liquids, pastes, bars, etc.
Abstract:
The present invention relates to liquid and solid biodegradable fabric softener compositions combined with highly enduring substantive perfumes. These compositions are naturally, or synthetically, derived perfumes which are hydrophobic, defined by having a low rinse water solubility (ClogP is greater than or equal to 3.0). These perfumes also have low volatility, a boiling point of 250.degree. C., or greater. These compositions provide better perfume deposition on treated fabric, and consequently are not substantially lost during the rinse and drying cycle for less impact on the environment. Also, these perfumes improve the physical stability of the softener composition.
Abstract:
The present invention relates to dryer-activated fabric softening compositions comprising: (A) quaternary ammonium compounds; (B) a carboxylic acid salt of a tertiary amine and/or a tertiary amine ester; and (C) optionally, a nonionic softener; wherein the IV of the total number of fatty acyl groups present in (A), (B), and (C) is from about 3 to about 60. These compositions exhibit good antistatic properties as well as improved delivery from a substrate.
Abstract:
Cyclodextrin complexes are prepared utilizing processes in which the cyclodextrin/active complex is prepared under concentrated reaction conditions in which there is no more than about 40% solvent, e.g., water, with mechanical working, to provide a complex ultimate particle size of less than about 12 microns and the resulting complex reaction mixture is incorporated, preferably without further operation, into at least one fabric conditioning material, preferably cationic fabric conditioning active, preferably in liquid (molten) form, preferably at a temperature between about 60 and about 95.degree. C., and mechanically worked to reduce complex aggregate particle size below about 200 microns. The resulting complex/fabric conditioning material mixture is used to prepare, e.g., dryer-added fabric softener article, e.g., sheet. The mixture of complex and fabric softener material preferably contains a small amount of an anionic surfactant to help avoid deposition of, e.g., unreacted cyclodextrin onto the equipment used to prepare the fabric conditioning composition and/or article (sheet).
Abstract:
Fabric softening compositions, preferably in liquid form, for use in the rinse cycle of home laundry operations are improved by: (a) using certain protected water sensitive materials, especially particulate complexes of cyclodextrins and perfumes, which are protected in fabric softening compositions and/or detergent compositions, by e.g., imbedding said particulate complex in relatively high melting protective material that is substantially water-insoluble and, preferably, non-water-swellable and is solid at normal storage conditions, but which melts at the temperatures encountered in automatic fabric dryers (laundry dryers); (b) using soil release polymers to help suspend water-insoluble particles in aqueous fabric softening compositions; and/or (c) preparing the said protected particulate water sensitive materials (complexes) by melting the said high melting materials, dispersing the said particulate complexes, or other water sensitive material, in the molten high melting protective material and dispersing the resulting molten mixture in aqueous media, especially surfactant solution or aqueous fabric softener composition, and cooling to form small, smooth, spherical particles of the particulate complexes, or other water sensitive material, substantially protected by the high melting material.