Abstract:
A magnetic sensor of a sensor unit includes magnetic sensing elements, an encapsulating portion, a primary terminal group and a secondary terminal group. Another magnetic sensor includes magnetic sensing elements, an encapsulating portion, a primary terminal group and a secondary terminal group. The magnetic sensors are mounted on a common surface of a circuit board. The adjacent two magnetic sensors, which are oriented in a common direction, are arranged such that the secondary terminal group of one of the adjacent two magnetic sensors is opposed to the primary terminal group of the other one of the adjacent two magnetic sensors. A primary output terminal and a secondary output terminal are placed asymmetrically to each other with respect to a center line of the encapsulating portion.
Abstract:
A torsion bar has first and second end portions that are fixed to input and output shafts, respectively, to coaxially connect between the input and output shafts. A multipolar magnet is fixed to the input shaft. First and second magnetic yokes are fixed to the output shaft. Magnetic sensors are held between magnetic flux collecting portions of first and second magnetic flux collecting rings, which are magnetically coupled to the first and second magnetic yokes, respectively. In each of the magnetic flux collecting portion, a connecting section and a mounting section are configured such that a width of the connecting section is smaller than a width of the mounting section.
Abstract:
A cutout portion is formed in a substrate of a magnetic detection device, the cutout portion opening at an outer edge of the substrate. Magnetic detection elements of a magnetic sensor detects magnetic field formed by first and second collector portions. A mold section encapsulates the magnetic detection elements. The magnetic sensor is surface mounted such that a portion of the mold section overlaps with the cutout portion. The first collector portion faces a front surface of the magnetic sensor. A portion of the second collector portion is positioned in the cutout portion to face a rear surface of the magnetic sensor. Accordingly, compared to a case where a cutout portion is not provided, a magnetic circuit gap between the first and second collector portions is reduced.
Abstract:
A cutout portion is formed in a substrate of a magnetic detection device, the cutout portion opening at an outer edge of the substrate. Magnetic detection elements of a magnetic sensor detects magnetic field formed by first and second collector portions. A mold section encapsulates the magnetic detection elements. The magnetic sensor is surface mounted such that a portion of the mold section overlaps with the cutout portion. The first collector portion faces a front surface of the magnetic sensor. A portion of the second collector portion is positioned in the cutout portion to face a rear surface of the magnetic sensor. Accordingly, compared to a case where a cutout portion is not provided, a magnetic circuit gap between the first and second collector portions is reduced.
Abstract:
A rotor has a rotor core made of a magnetic material, a permanent magnet provided in a magnet insertion hole of the rotor core, and a cushioning material. The cushioning material is provided at a location where a distance between a wall surface of the magnet insertion hole and the permanent magnet is the narrowest, on both sides in a rotational direction with respect to the permanent magnet.
Abstract:
A hole is formed in a substrate of a magnetic detection device, the hole being spaced away from an outer edge of the substrate. Magnetic detection elements of a magnetic sensor detects magnetic field formed at first and second collector portions. A mold section encapsulates the magnetic detection elements. The magnetic sensor is surface mounted such that a portion of the mold section overlaps with the hole. The first collector portion faces a front surface of the magnetic sensor. A portion of the second collector portion is positioned in the hole to face a rear surface of the magnetic sensor. Accordingly, compared to a case where a hole is not provided, a magnetic circuit gap between the first and second collector portions is reduced.
Abstract:
A torque sensor includes: a torsion bar; a multi-pole magnet; a pair of yokes on an outside of the multi-pole magnet in a radial direction and providing a magnetic circuit in a magnetic field generated by the multi-pole magnet; and a pair of magnetic sensors arranged along a circumferential direction. Each magnetic sensor includes a magnetism sensing part for detecting a magnetic flux density generated in the magnetic circuit, and outputs a detection signal to an external computing device. The magnetic sensors output the detection signals to the external computing device such that the computing device calculates a sum of outputs or a difference of outputs of the magnetic sensors so as to cancel a variation of the outputs produced by a magnetic flux generated from the multi-pole magnet and directly reaching the magnetism sensing parts.
Abstract:
A torque sensor has a magnetic sensor, which is composed of a first magnetic detecting element, a second magnetic detecting element and a comparator. The first magnetic detecting element outputs an output signal of a provisional detection value, while the second magnetic detecting element outputs an output signal of a reference value. The comparator compares the provisional detection value and the reference value and outputs the provisional detection value as an authorized detection value, when a difference value between the provisional detection value and the reference value is smaller than a predetermined threshold value.
Abstract:
A magnetic sensor of a sensor unit includes magnetic sensing elements, an encapsulating portion, a primary terminal group and a secondary terminal group. Another magnetic sensor includes magnetic sensing elements, an encapsulating portion, a primary terminal group and a secondary terminal group. The magnetic sensors are mounted on a common surface of a circuit board. The adjacent two magnetic sensors, which are oriented in a common direction, are arranged such that the secondary terminal group of one of the adjacent two magnetic sensors is opposed to the primary terminal group of the other one of the adjacent two magnetic sensors. A primary output terminal and a secondary output terminal are placed asymmetrically to each other with respect to a center line of the encapsulating portion.
Abstract:
A hole is formed in a substrate of a magnetic detection device, the hole being spaced away from an outer edge of the substrate. Magnetic detection elements of a magnetic sensor detects magnetic field formed at first and second collector portions. A mold section encapsulates the magnetic detection elements. The magnetic sensor is surface mounted such that a portion of the mold section overlaps with the hole. The first collector portion faces a front surface of the magnetic sensor. A portion of the second collector portion is positioned in the hole to face a rear surface of the magnetic sensor. Accordingly, compared to a case where a hole is not provided, a magnetic circuit gap between the first and second collector portions is reduced.