Abstract:
Apparatus and methods for scanning for access points (APs) for wireless local area network (WLAN) positioning. In one embodiment a wireless device includes a WLAN positioning system. The WLAN positioning system includes an AP scanner. The AP scanner is configured to determine which WLAN channels are being used by APs proximate to the wireless device. The AP scanner is also configured to scan for AP transmissions only the WLAN channels determined to be used by APs proximate to the wireless device. The AP scanner is further configured to extract signal strength and AP identification information for WLAN positioning from the AP transmissions on the scanned channels.
Abstract:
Embodiments provide a system and method for reconstructing steering matrices in a MIMO-OFDM (multiple-input multiple-output orthogonal frequency division multiplexing) system by interpolating steering matrices in transmit beamforming. The reconstructed steering matrices provide a faithful representation to the actual steering matrices. Embodiments receive channel information for a subset of sub-carriers of a channel, interpolate the channel information for the subset of sub-carriers to obtain at least one Givens rotation angle for remaining sub-carriers of the channel which are not members of the subset, and reconstruct missing steering matrices from the interpolated angles.
Abstract:
A navigation system determines its usage mode. In some embodiments, a method comprises determining a usage mode of a navigation system based on at least one of an acceleration indicator, a speed indicator, and a magnet sensor. The usage mode is at least one of a pedestrian mode, a vehicular mode, an aerial mode, a train mode, and a marine mode. The method further comprises configuring a navigation subsystem based on the usage mode.
Abstract:
A system comprises a gyroscope configured to produce a gyroscope signal, an accelerometer configured to produce an accelerometer signal, and a filter unit coupled to the gyroscope and having a configurable bandwidth. The filter unit configured to filter the gyroscope signal. The system also comprises control logic that is configured to alter the bandwidth of the filter unit based on the accelerometer signal.
Abstract:
Embodiments provide a system and method for efficiently classifying different channel types in an orthogonal frequency division multiplexing (OFDM) system. Embodiments quantify the frequency selectivity in a channel by measuring the variation in a particular channel statistic across sub-carriers in an OFDM system, involve minimal complexity in implementation, and can be used in a variety of scenarios. One embodiment is a method for classifying channels in an OFDM system, comprising measuring variation of at least one channel statistic across sub-carriers, quantifying the variation to determine a measurement value, and applying the measurement value to at least one threshold to classify the channel.
Abstract:
Apparatus and method for cooperatively positioning a mobile wireless device. In one embodiment a mobile wireless device includes a navigation satellite receiver, a WLAN transceiver, and a cooperative positioning system. The navigation satellite receiver is configured to receive positioning signals from positioning satellites. The cooperative positioning system is configured to receive positioning measurements from a cooperating mobile wireless device via the WLAN transceiver. The received positioning measurements are derived from satellite positioning signals received by the cooperating mobile wireless device. The cooperative positioning system is also configured to determine a position of the mobile wireless device based on the positioning measurements received from the cooperating mobile wireless device, positioning measurements provided by the navigation satellite receiver, and a focal measurement that is a function of at least one of the position and the clock bias of both the mobile wireless device and the cooperating mobile wireless device.
Abstract:
A system and method for classifying a channel with regard to delay spread in a wireless network applying orthogonal frequency division multiplexing. In one embodiment, a wireless receiver includes a channel classifier. The channel classifier is configured to compute a channel estimate corresponding to a channel traversed by a packet received by the wireless receiver. The channel classifier is also configured to partition the channel estimate into a plurality of windows. Each window corresponds to a range of time of the channel estimate. The channel classifier is further configured to assign a delay spread classification to the channel based on a distribution of energy across the windows.
Abstract:
Method and apparatus for communicating via a network. In one embodiment, a device for communicating via a network includes a medium access controller (MAC). The MAC is configured to apply a contention window for collision avoidance on the network, and to determine whether the network is free for use on expiration of a time value of the contention window. The MAC is also configured to initiate a transmission based on a determination that the network is free for use. The MAC is further configured to increase, in accordance with a predetermined probability value, the time value of the contention window based on: the transmission being successful; and the time value of the contention window being a minimum contention window time value. The probability value establishes the likelihood of the MAC increasing the time value of the contention window with respect to successful transmissions with the minimum contention window time value.