摘要:
An embodiment includes a magnetic wiggler comprising: first and second magnets adjacent each other in a line of at least 50 magnets; a pathway, adjacent to the line, along which an electron beam may travel that is to couple to a particle accelerator; and a plurality of vias on multiple sides of each of the first and second magnets to provide multiple currents, having opposite directions, respectively to the first and second magnets to orient the first and second magnets with opposing non-volatile orientations. Other embodiments are provided herein.
摘要:
High speed precessionally switched magnetic logic devices and architectures are described. In a first example, a magnetic logic device includes an input electrode having a first nanomagnet and an output electrode having a second nanomagnet. The spins of the second nanomagnet are non-collinear with the spins of the first nanomagnet. A channel region and corresponding ground electrode are disposed between the input and output electrodes. In a second example, a magnetic logic device includes an input electrode having an in-plane nanomagnet and an output electrode having a perpendicular magnetic anisotropy (PMA) magnet. A channel region and corresponding ground electrode are disposed between the input and output electrodes.
摘要:
High speed precessionally switched magnetic logic devices and architectures are described. In a first example, a magnetic logic device includes an input electrode having a first nanomagnet and an output electrode having a second nanomagnet. The spins of the second nanomagnet are non-collinear with the spins of the first nanomagnet. A channel region and corresponding ground electrode are disposed between the input and output electrodes. In a second example, a magnetic logic device includes an input electrode having an in-plane nanomagnet and an output electrode having a perpendicular magnetic anisotropy (PMA) magnet. A channel region and corresponding ground electrode are disposed between the input and output electrodes.
摘要:
An embodiment of the invention includes an analog associative memory, which includes an array of coupled voltage or current controlled oscillators, that matches patterns based on shifting frequencies away from a center frequency of the oscillators. The test and memorized patterns are programmed into the oscillators by varying the voltage or current that controls the oscillators. Matching patterns result in smaller shifts of frequencies and enable synchronization of oscillators. Non-matching patterns result in larger shifts and preclude synchronization of oscillators. In one embodiment the patterns each include binary data and the pattern matching is based on discrete shifts. In one embodiment the patterns each include grayscale data and the pattern matching is based on continuously-varied shifts. Other embodiments are described herein.
摘要:
Provided are transistor devices such as logic gates that are capable of associating a computational state and or performing logic operations with detectable electronic spin state and or magnetic state. Methods of operating transistor devices employing magnetic states are provided. Devices comprise input and output structures and magnetic films capable of being converted between magnetic states.
摘要:
A device including at least two spintronic devices and a method of making the same. A magnetic connector extends between the two spintronic devices to conduct a magnetization between the two. The magnetic connector may further be disposed to conduct current to switch a magnetization of one of the two spintronic devices.
摘要:
A spin torque oscillator and a method of making same. The spin torque oscillator is configured to generate microwave electrical oscillations without the use of a magnetic field external thereto, the spin torque oscillator having one of a plurality of input nanopillars and a nanopillar having a plurality of free FM layers.
摘要:
An embodiment of the invention is a transistor formed in part by a ferromagnetic semiconductor with a sufficiently high ferromagnetic transition temperature to coherently amplify spin polarization of a current. For example, an injected non-polarized control current creates ferromagnetic conditions within the transistor base, enabling a small spin-polarized signal current to generate spontaneous magnetization of a larger output current.
摘要:
Provided are a method and a system, wherein optical beams of a plurality of wavelengths are directed through a plurality of optical devices, wherein waveguides comprising the optical devices have different fabrication errors, and wherein the waveguides have a plurality of waveguide lengths and a plurality of waveguide widths. Optical phase errors corresponding to the waveguides are measured by the optical devices. A determination is made of the components of the optical phase errors for the waveguides from the measured phase errors.
摘要:
A fabrication method reduces minimum waveguide spacing in an integrated optical device. Core regions of the waveguides are etched into cladding material and then filled with core material, instead of etching the spacing between the core material first and then filling the spacing. This allows the spacing between the core regions to be made arbitrarily small, without being constrained by an aspect ratio associated with a conventional etch and deposition/re-flow process used to form waveguide spacings.