摘要:
A light-emitting polymer and its preparation method, the polymer being excellent in electron injection and transport ability as well as hole injection and transport ability in an EL device, the EL device manufactured from the polymer being also emittable in the blue emission region, in which the EL device from an inorganic material is not mostly emittable. The light-emitting polymer of the invention is an alternated copolymer having repeated units (arylenevinylene units) excellent in hole injection and transport ability and repeated units (fluorinated tetraphenyl units) excellent in electron injection and transport ability with alternated order, as shown in formula (II). An EL device manufactured from the light-emitting polymer, a fluorinated tetraphenyl derivative of formula (I), which is used as a monomer to prepare the light-emitting polymer, and their preparation methods.
摘要:
A light-emitting polymer and its preparation method, the polymer being excellent in electron injection and transport ability as well as hole injection and transport ability in an EL device, the EL device manufactured from the polymer being also emittable in the blue emission region, in which the EL device from an inorganic material is not mostly emittable. The light-emitting polymer of the invention is an alternated copolymer having repeated units (arylenevinylene units) excellent in hole injection and transport ability and repeated units (fluorinated tetraphenyl units) excellent in electron injection and transport ability with alternated order, as shown in formula (II). An EL device manufactured from the light-emitting polymer, a fluorinated tetraphenyl derivative of formula (I), which is used as a monomer to prepare the light-emitting polymer, and their preparation methods.
摘要:
There is disclosed a synthetic method of mixing a soluble poly(1,4-phenylenvinylene) (PPV) derivative in which two silyl groups are substituted, and an electroluminescent device using the same. In the poly[2,5-bis(dimethyloctylsilyl)-1,4-phenylenvinylene] (BDMOS-PPV) according to the present invention, the final polymer is easily dissolved in common organic solvents and shows a measured absolute PL quantum efficiency of 60% much higher than that of the conventional PPV having 25%, thus making it possible to be applied as material of an electroluminescent device. Also, it provides an outstanding advantage that it can be applied to a flexible light-emitting device.
摘要:
There is disclosed a syntheitc method of mixing a soluble poly(1,4-phenylenvinylene)(PPV) derivative in which two silyl groups are substituted, and an electroluminescent device using the same. In the poly�2,5-bis(dimethyloctylsilyl)-1,4-phenylenvinylene! (BDMOS-PPV) according to the present invention, the final polymer is easily dissolved in common organic solvents and shows a measured absolute PL quantum efficiency of 60% much higher than that of the conventional PPV having 25%, thus making it possible to be applied as material of an electroluminnescent device. Also, it provides an outstanding advantage that it can be applied to a flexible light-emitting device.
摘要:
The present invention is directed to a thin film material for encapsulation of organic or polymeric light-emitting electric device having light-emitting layer between cathode and anode, for elongation of lifetime of said device and for providing said device with flexibility, more specifically, to a thin film material for encapsulation of organic or polymeric light-emitting electric device comprising polymer having, as repeating unit of backbone, homo-, 2-component co-, ter-, or tetra-polymer of one to four pentaerythritol acrylate monomer, or physically mixed polymer blend of said polymer and polymers other than poly(pentaerythrithol acrylate).Moreover, the present invention is directed to a method for encapsulation of organic or polymeric light-emitting device using said thin film material consisting of wet and dry process.The light-emitting device encapsulated according to the present invention can be bended and can be used in the manufacturing of large surface area display.
摘要:
The present invention relates to an electroluminescent device, which is characterized in that it uses polymer made of ionomer containing metal ions as a charge transport layer. The ionomer contains an ionized metallic salt and the polymer forms a physical cross-linking around the metal. Thus, it has not only a good mechanical property but also a superior thermal stability. Also it shows an ion conductivity due to movement of ion under electric field, and the conductivity can be controlled by varying the concentration of the substituted ion. The ionomer layer can be easily obtained by spin coating method. In addition, the light-emittive quantum efficiency can be greatly increased by inserting the ionomer layer between the electrode and the light-emitting layer to form a stabilized interface. On the other hand, it can be applied to manufacturing of the flexible electroluminescent device because the ionomer is also a polymer.
摘要:
Provided is an apparatus for measuring a picture and a lifetime of a display panel including: a chamber having at least one display panel for measurement disposed therein, and for uniformly maintaining temperature and humidity conditions of an inner portion; at least one camera installed in the chamber to obtain image signals of the display panel; a bias supply and measurement part for providing pulse bias voltage and current required to measure depending on control signals, and measuring the voltage and current to convert into digital data when the display panel is driven; a converter for converting the image signals obtained through the camera into digital data; and a control and data processing part for generating parameters by receiving the digital data from the bias supply and measurement part and the converter, and analyzing a lifetime of the display panel using the parameters.
摘要:
Provided is an apparatus for measuring a picture and a lifetime of a display panel including: a chamber having at least one display panel for measurement disposed therein, and for uniformly maintaining temperature and humidity conditions of an inner portion; at least one camera installed in the chamber to obtain image signals of the display panel; a bias supply and measurement part for providing pulse bias voltage and current required to measure depending on control signals, and measuring the voltage and current to convert into digital data when the display panel is driven; a converter for converting the image signals obtained through the camera into digital data; and a control and data processing part for generating parameters by receiving the digital data from the bias supply and measurement part and the converter, and analyzing a lifetime of the display panel using the parameters.
摘要:
An organic light emitting diode (OLED) device is provided. The OLED device includes: a substrate; an anode formed on the substrate; a first organic thin layer formed on the anode; an organic emission layer formed on the first organic thin layer; a second organic thin layer formed on the organic emission layer; and a cathode formed on the second organic thin layer, wherein the first and second organic thin layers are formed in a single layer or a multi-layer, and at least a part of the first or second organic thin layer is doped with or formed of an insulator. The OLED device provides excellent durability, long life-time, and increased luminous efficiency by balanced charge injection caused by doping or stacking the insulator into or on the organic thin layer.
摘要:
Provided are a hybrid white organic light emitting diode (OLED) and a method of fabricating the same. A HOMO level difference between a fluorescent emission layer and an electron transport layer in an organic emission layer (OLED) becomes higher than that between the other layers or a LUMO level difference between a fluorescent emission layer and a hole transport layer is higher than that between the other layers, so that a recombination region is restricted to a part of an emission layer to obtain high-efficiency fluorescent light emission. In addition, triplet excitons that are not used in a fluorescent emission layer are transferred to an auxiliary emission layer formed to be spaced apart from a recombination region by a predetermined distance to emit light in a different color from the fluorescent emission layer, so that both singlet and triplet excitons formed in the OLED are used to obtain high-efficiency white light emission.