Abstract:
Provided is a self aligned field effect transistor structure. The self aligned field effect transistor structure includes: an active region pattern on a substrate; a first gate electrode and a second gate electrode facing each other with the active region pattern therebetween; and a source electrode and a drain electrode connected to the active region pattern and disposed to be symmetric with respect to a line connecting the first and second gate electrodes, wherein the first and second gate electrodes and the source and drain electrodes are disposed on the same plane of the substrate.
Abstract:
Disclosed are a printing plate and a mirror thereof, the printing plate including: printing portions for transferring an immersed solution, the printing portions being formed flat and arranged at regular intervals on one side of an upper part of the printing plate; and non-printing portions corresponding to a remaining area other than the printing portions, the non-printing portions being formed with at least two concavities and convexities respectively and arranged at regular intervals on the other side of the upper part of the printing plate.
Abstract:
Disclosed is an intaglio printing plate including: a pattern portion where a to-be-printed pattern is located; a non-pattern portion corresponding to a remaining area other than the pattern portion; and a supplementary pattern portion having a repetitive pattern with a predetermined form, wherein at least a part of the pattern portion is divided by a pattern structure that is formed by the supplementary pattern portion.
Abstract:
Provided is a method of fabricating an organic thin film transistor (OTFT) using surface energy control. The method changes a polarity of a gate insulating layer to a polarity of a semiconductor channel layer to be formed on the gate insulating layer by controlling surface energy of the gate insulating layer, thereby promoting growth of the semiconductor channel layer on the gate insulating layer. According to the method, the interface characteristics between the gate insulating layer and the semiconductor channel layer are improved, and thus it is possible to implement an OTFT that can minimize leakage current and has high field effect mobility and low turn-on voltage.
Abstract:
A method of fabricating a semiconductor device includes forming a via hole in a semiconductor substrate, forming an isolation layer on an inner side of the via hole, forming a diffusion barrier layer over an upper portion of the semiconductor substrate and the inner side of the via hole where the isolation layer is formed, arranging a solvent, which contains electrically charged metal particles, on the semiconductor substrate where the diffusion barrier layer is formed, and filling the via hole with the metal particles by moving the metal particles using applied external force. The applied external force said includes a voltage causing an electric current to flow between the semiconductor substrate and the solvent, an electrical field applied between the semiconductor substrate and the solvent, or a magnetic field applied between the semiconductor substrate and the solvent.
Abstract:
Provided is a method of fabricating an organic thin film transistor (OTFT) using surface energy control. The method changes a polarity of a gate insulating layer to a polarity of a semiconductor channel layer to be formed on the gate insulating layer by controlling surface energy of the gate insulating layer, thereby promoting growth of the semiconductor channel layer on the gate insulating layer. According to the method, the interface characteristics between the gate insulating layer and the semiconductor channel layer are improved, and thus it is possible to implement an OTFT that can minimize leakage current and has high field effect mobility and low turn-on voltage.
Abstract:
Provided is an apparatus for measuring a picture and a lifetime of a display panel including: a chamber having at least one display panel for measurement disposed therein, and for uniformly maintaining temperature and humidity conditions of an inner portion; at least one camera installed in the chamber to obtain image signals of the display panel; a bias supply and measurement part for providing pulse bias voltage and current required to measure depending on control signals, and measuring the voltage and current to convert into digital data when the display panel is driven; a converter for converting the image signals obtained through the camera into digital data; and a control and data processing part for generating parameters by receiving the digital data from the bias supply and measurement part and the converter, and analyzing a lifetime of the display panel using the parameters.
Abstract:
Provided is an organic electroluminescent (EL) device including a substrate, a transparent electrode formed on the substrate, an organic light-emitting layer formed on the transparent electrode, a metal electrode formed on the organic light-emitting layer, a first insulating layer formed on the metal electrode, a gate electrode formed on the first insulating layer, a second insulating layer formed on the gate electrode, an organic semiconducting layer formed on the second insulating layer, a source electrode connected to one end of the organic semiconducting layer on the second insulating layer and connected to the metal electrode, and a drain electrode connected to the other end of the organic semiconducting layer on the second insulating layer.
Abstract:
A light-emitting polymer and its preparation method, the polymer being excellent in electron injection and transport ability as well as hole injection and transport ability in an EL device, the EL device manufactured from the polymer being also emittable in the blue emission region, in which the EL device from an inorganic material is not mostly emittable. The light-emitting polymer of the invention is an alternated copolymer having repeated units (arylenevinylene units) excellent in hole injection and transport ability and repeated units (fluorinated tetraphenyl units) excellent in electron injection and transport ability with alternated order, as shown in formula (II). An EL device manufactured from the light-emitting polymer, a fluorinated tetraphenyl derivative of formula (I), which is used as a monomer to prepare the light-emitting polymer, and their preparation methods.
Abstract:
There is disclosed a syntheitc method of mixing a soluble poly(1,4-phenylenvinylene)(PPV) derivative in which two silyl groups are substituted, and an electroluminescent device using the same. In the poly�2,5-bis(dimethyloctylsilyl)-1,4-phenylenvinylene! (BDMOS-PPV) according to the present invention, the final polymer is easily dissolved in common organic solvents and shows a measured absolute PL quantum efficiency of 60% much higher than that of the conventional PPV having 25%, thus making it possible to be applied as material of an electroluminnescent device. Also, it provides an outstanding advantage that it can be applied to a flexible light-emitting device.