Abstract:
Provided is a method for a wireless power transfer. The method includes modulating a transmission frequency according to a predetermined value at a wireless power transmitter; and transmitting a high frequency signal according to the modulated transmission signal from the wireless power transmitter to at least one wireless power receiver and redetermining the predetermined value according to information which corresponds to a power value of the high frequency signal received by the at least one wireless power receiver, wherein the modulating the transmission frequency at the wireless power transmitter and transmitting the high frequency and the redetermining the predetermined value the at least one wireless power receiver are repeated.
Abstract:
A capacitive gas sensor and a method of fabricating the same are provided. The capacitive gas sensor includes an insulating substrate, a metal electrode and a micro thin-film heater wire integrally formed on the same plane of the insulating substrate, and an oxide detection layer coated on the metal electrode and the micro thin-film heater wire. The fabrication method includes depositing a metal layer on an insulating substrate, etching the metal layer so that a metal electrode and a micro thin-film heater wire form an interdigital transducer on the same plane, and forming a nano crystal complex oxide thin film or a complex oxide nano fiber coating layer on the metal electrode and the micro thin-film heater wire as a detecting layer. The capacitive gas sensor can be easily fabricated and can have excellent characteristics such as high sensitivity, high selectivity, high stability, and low power consumption.
Abstract:
A gas sensor for detecting environmentally harmful gases is provided. The sensor includes an insulating substrate, a metal electrode formed on the insulating substrate, and a sensing layer formed on the metal electrode and including a semiconductor oxide (Lan+1NinO3n+1(n=1,2,3)) nanofiber. Therefore, a semiconductor oxide (Lan+1NinO3n+1(n=1,2,3)) has an ABO3-type basic crystalline structure and thus is stable in structure, and is a representative material having a nonstoichiometric composition due to oxygen defects. Since the semiconductor oxide has great oxygen defects on its surface, a great change in electrical resistance may be exhibited due to reactive gas adsorption and oxidation/reduction reaction on the oxide surface. Also, a method of fabricating the gas sensor is provided.
Abstract:
Disclosed is a method for manufacturing a conductive organic thin film device. An air-bridge type of an upper electrode is formed over a lower electrode by using a sacrificial layer and then a gap having a thickness of several nano meter is formed in a part at which the upper electrode and the lower electrode intersect by removing the sacrificial layer. The conductive organic molecules are uniformly adsorbed between the upper electrode and the lower electrode of the nano gap. Adsorption extent of the conductive organic molecules is confirmed by observing a current flowing through the upper and lower electrodes when the conductive organic molecules are adsorbed. Thus, reproducibility of a manufacturing process is improved and mass production is facilitated by adoption of a standardized process.
Abstract:
Disclosed is an electroluminescence light-emitting device for generating an optical wavelength, comprises a substrate; an ITO layer coated on the substrate, at lest two light-emitting layers sequentially formed on the ITO layer and having a different band gap, and a metal electrode formed on an upper light-emitting layer of the at least two light-emitting layers, wherein the ITO layer is used as an anode and the metal electrode is used as a cathode.
Abstract:
Provided is a portable device. The portable device includes a near distance antenna, a long distance antenna, a first power generation circuit, a second power generation circuit, and a battery. The near distance antenna receives a first power source signal in an electromagnetic inductive coupling scheme. The long distance antenna receives a second power source signal in a magnetic resonance scheme. The first power generation circuit generates a power source from the first power source signal. The second power generation circuit generates a power source from the second power source signal. The battery is charged with the generated power source.
Abstract:
Provided are a wireless power transmission device and wireless power reception device. A power-relaying resonant coil is disposed between a power transmitter and a power receiver to increase transmission efficiency and lengthen a transmission distance. The wireless power transmission device includes a power generation module for generating power, a power coil for receiving the power, a transmitting coil for resonating at the unique resonant frequency due to magnetic induction with the power coil and generating a non-radiative electromagnetic wave, and one or more power relay coils for relaying the non-radiative electromagnetic wave.
Abstract:
A rectifying antenna array includes a plurality of rectifying antennas connected in parallel. Each of the rectifying antennas includes a reception-side antenna receiving AC power through magnetic induction with a reception-side resonant antenna of a resonant wireless power receiver and a rectifier diode connected to the reception-side antenna and converting the AC power into DC power.
Abstract:
A capacitive gas sensor and a method of fabricating the same are provided. The capacitive gas sensor includes an insulating substrate, a metal electrode and a micro thin-film heater wire integrally formed on the same plane of the insulating substrate, and an oxide detection layer coated on the metal electrode and the micro thin-film heater wire. The fabrication method includes depositing a metal layer on an insulating substrate, etching the metal layer so that a metal electrode and a micro thin-film heater wire form an interdigital transducer on the same plane, and forming a nano crystal complex oxide thin film or a complex oxide nano fiber coating layer on the metal electrode and the micro thin-film heater wire as a detecting layer. The capacitive gas sensor can be easily fabricated and can have excellent characteristics such as high sensitivity, high selectivity, high stability, and low power consumption.
Abstract:
Provided is a method for manufacturing a nano-gap electrode device comprising the steps of: forming a first electrode on a substrate; forming a spacer on a sidewall of the first electrode; forming a second electrode on an exposed substrate at a side of the spacer; and forming a nano-gap between the first electrode and the second electrode by removing the spacer, whereby it is possible to control the nano-gap position, width, shape, and etc., reproducibly, and manufacture a plurality of nano-gap electrode devices at the same time.