Abstract:
Several embodiments of a personal display system are disclosed that comprises modular and extensible features to affect a range of user/wearer/viewer experiences. In one embodiment, the personal display system comprises a frame; a processor capable of sending image data signals and control signals; a display; an optic system, said optic system optically coupled to said at least one display; and a set of actuators, said actuators coupled to said frame and in communication with the optic system, such that said set of actuators are capable of moving the optic system, according to control signals sent from said processor. In another embodiment, a method for pre-warping input image data under processor control and according to ambient conditions, such as light and temperature, is disclosed.
Abstract:
Several embodiments of a personal display systems that comprises modular and extensible features to affect a range of user/wearer/viewer experiences. In one embodiment, the personal display system comprises a frame, said frame formed to fit and mount the head of a viewer; at least one optical piece, said at least one optical piece comprising at least a portion of a plurality of active emissive elements; at least one side piece, said side piece capable of being mated to said frame; and further wherein at least one said side piece comprising components sufficient to interact with images intended to comprise a view of said viewer. In another embodiment, a front piece may be mated to the frame of the personal display system wherein such front piece may comprise a transmissive portion affecting some form of modulation of the light being transmitted there through.
Abstract:
An audio apparatus is configured to switch, when there exists a first audio interface between the audio apparatus and a computer apparatus, to using a second audio interface between the audio apparatus and the computer apparatus, the second audio interface being different from the first audio interface. The switching comprises: receiving, via the first audio interface, combined audio data and non-audio data, the non-audio data comprising a request to switch to using the second audio interface; obtaining the request from the data; and, in response to obtaining the request, transmitting to the computer apparatus a confirmation of switching to using the second audio interface. The audio apparatus and the computer apparatus are described and claimed.
Abstract:
Several embodiments of a personal display system are disclosed that comprises modular and extensible features to affect a range of user/wearer/viewer experiences. In one embodiment, the personal display system comprises a frame; a processor capable of sending image data signals and control signals; a display; an optic system, said optic system optically coupled to said at least one display; and a set of actuators, said actuators coupled to said frame and in communication with the optic system, such that said set of actuators are capable of moving the optic system, according to control signals sent from said processor. In another embodiment, a method for pre-warping input image data under processor control and according to ambient conditions, such as light and temperature, is disclosed.
Abstract:
Several embodiments of a personal display systems that comprises modular and extensible features to affect a range of user/wearer/viewer experiences. In one embodiment, the personal display system comprises a frame, said frame formed to fit and mount the head of a viewer; at least one optical piece, said at least one optical piece comprising at least a portion of a plurality of active emissive elements; at least one side piece, said side piece capable of being mated to said frame; and further wherein at least one said side piece comprising components sufficient to interact with images intended to comprise a view of said viewer. In another embodiment, a front piece may be mated to the frame of the personal display system wherein such front piece may comprise a transmissive portion affecting some form of modulation of the light being transmitted there through.
Abstract:
A display provides increased contrast and resolution via first LCD panel energized to generate an image and a second LCD panel configured to increase contrast of the image. The second panel is an LCD panel without color filters and is configured to increase contrast by decreasing black levels of dark portions of images using polarization rotation and filtration. The second LCD panel may have higher resolution than the first LCD panel. A half wave plate and/or film is placed in between the first and the second panel. The panels may be directly illuminated or edge lit, and may be globally or locally dimmed lights that may also include individual control of color intensities for each image or frame displayed.
Abstract:
A dual-panel display system is provided that comprises control modules and algorithms to select codeword pairs (CWs) to drive a first image-generating panel and a second contrast-improving panel. The first codewords is selected by considering some characteristics of the input image data (e.g., peak luminance) and to improve some image rendering metric (e.g., reduced parallax, reduced contouring, improved level precision). The first codeword may be selected to be the minimum first codeword within a set of codeword pairs that preserves the peak luminance required by the input image data. Also, the first codeword may be selected to minimize the number of Just Noticeable Difference (JND) steps in the final image to be rendered. The second codeword may be selected to similarly improve image quality according to a given quality metric.
Abstract:
Dual modulation display systems comprising a first modulation layer and a second modulation layer are disclosed, such that the first modulation layer and the second modulation layer are offset by a desired distance. In one embodiment, the offset distance may be an actual spatial offset distance in one, two or a preferred direction. In another embodiment, the offset distance may be a rotational offset between the two layers. In yet another embodiment, the offset may be a temporal offset between the images appearing on the first modulation layer and the second modulation layer. In yet another embodiment, the offset may be a combination of spatial, rotational and/or temporal offsets. The display system may comprise a controller capable of mapping input image data onto the first and second modulation layers via intermediate signals and the intermediate signals may be some function of the offset.
Abstract:
Dual modulation display systems comprising a first modulation layer and a second modulation layer are disclosed, such that the first modulation layer and the second modulation layer are offset by a desired distance. In one embodiment, the offset distance may be an actual spatial offset distance in one, two or a preferred direction. In another embodiment, the offset distance may be a rotational offset between the two layers. In yet another embodiment, the offset may be a temporal offset between the images appearing on the first modulation layer and the second modulation layer. In yet another embodiment, the offset may be a combination of spatial, rotational and/or temporal offsets. The display system may comprise a controller capable of mapping input image data onto the first and second modulation layers via intermediate signals and the intermediate signals may be some function of the offset.
Abstract:
A dual-panel display system is provided that comprises control modules and algorithms to select codeword pairs (CWs) to drive a first image-generating panel and a second contrast-improving panel. The first codewords is selected by considering some characteristics of the input image data (e.g., peak luminance) and to improve some image rendering metric (e.g., reduced parallax, reduced contouring, improved level precision). The first codeword may be selected to be the minimum first codeword within a set of codeword pairs that preserves the peak luminance required by the input image data. Also, the first codeword may be selected to minimize the number of Just Noticeable Difference (JND) steps in the final image to be rendered. The second codeword may be selected to similarly improve image quality according to a given quality metric.