摘要:
This invention provides a cost effective process and new Janus dendrimers where at least two dendrons are attached at the core (with or without a connector group) and where at least two of the dendrons have different functionality. Preferred are those Janus dendrimers where at least one dendron is a PEHAM dendron. Thus these Janus dendrimers are heterobifunctional in character and use unique ligation chemistry with single site functional dendrons, di-dendrons and multi-dendrons. Also included are Janus dendrons which maybe used as intermediates to make the Janus dendrimers or to further react with another reactive moiety. These Janus dendrimers can provide several new dendrimer moieties, namely: combinatorial libraries of bifunctional structures; combined target director and signaling dendrimers; specific targeting entities for diagnostic and therapeutic applications, such as for example targeted MRI agents, targeted radionuclide delivery for diseases such as cancer, and targeted photosensitive or radiowave sensitive agents.
摘要:
Dendritic polymers with enhanced amplification and interior functionality are disclosed. These dendritic polymers are made by use of fast, reactive ring-opening chemistry (or other fast reactions) combined with the use of branch cell reagents in a controlled way to rapidly and precisely build dendritic structures, generation by generation, with cleaner chemistry, often single products, lower excesses of reagents, lower levels of dilution, higher capacity method, more easily scaled to commercial dimensions, new ranges of materials, and lower cost. The dendritic compositions prepared have novel internal functionality, greater stability (e.g., thermal stability and less or no reverse Michael's reaction), and reach encapsulation surface densities at lower generations. Unexpectedly, these reactions of polyfunctional branch cell reagents with polyfunctional cores do not create cross-linked materials. Such dendritic polymers are useful as demulsifiers for oil/water emulsions, wet strength agents in the manufacture of paper, proton scavengers, polymers, nanoscale monomers, calibration standards for electron microscopy, making size selective membranes, and agents for modifying viscosity in aqueous formulations such as paint. When these dendritic polymers have a carried material associated with their surface and/or interior, then these dendritic polymers have additional properties for carrying materials due to the unique characteristics of the dendritic polymer, such as for drug delivery, transfection, and diagnostics.
摘要:
The present invention describes a process for preparing new looped dendrimer and dendron compounds by controlling the molar amount of branch cell reagent monomer that is combined with various cores bearing core-XR functionalities (e.g., primary, or secondary amines, thiol, or epoxy functionalities). These looped, macrocyclic structures are more robust to various conditions, with greater resistance to acid/base hydrolysis. Alternatively, the looped, macrocyclic structure may offer new orientations that would qualify it as a better chelation ligand for metals, and other similar uses.
摘要:
Poly(ester-acrylate) and poly(ester/epoxide) dendrimers. These materials can be synthesized by utilizing the so-called “sterically induced stoichiometric” principles. The preparation of the dendrimers is carried out by reacting precursor amino/polyamino-functional core materials with various branch cell reagents. The branch cell reagents are dimensionally large, relative to the amino/polyamino-initiator core and when reacted, produce generation=1 dendrimers directly in one step. There is also a method by which the dendrimers can be stabilized and that method is the reaction of the dendrimers with surface reactive molecules to pacify the reactive groups on the dendrimers.
摘要:
The present invention concerns core-shell tecto (dendritic polymers) that are associated with biologically active materials (such as nucleic acids for use for RNAi and in transfection). Also included are formulations for their use. The constructs are useful for the delivery of drugs to an animal or plant and may be in vivo, in vitro or ex vivo.
摘要:
An encapsulated chelate dendritic polymer and an encapsulated ligand dendritic polymer are disclosed which have unique properties. These encapsulated chelate dendritic polymers may have associated with its dendritic polymer surface target directors, proteins, DNA, RNA (including single strands) or any other moieties that will assist in diagnosis, therapy or delivery of this encapsulated chelate dendritic polymer. These encapsulated dendritic polymers are suitable as contrast agents for use in imaging in an animal, for other imaging techniques, for EPR, and as scavenger agents for chelant therapy. Formulations for these uses are also included within the scope of this invention.
摘要:
The present invention relates to novel therapeutic and diagnostic dendrimer based modular platforms (e.g., drug delivery platforms). In particular, the dendrimer based modular platforms are configured such that two or more dendrimers (e.g., PAMAM dendrimers) are coupled together (e.g., via a cycloaddition reaction) wherein each of the coupled dendrimers is functionalized (e.g., functionalized for targeting, imaging, sensing, and/or providing a therapeutic or diagnostic material and/or monitoring response to therapy). In some embodiments, the present invention provides dendrimer based modular platforms having coupled dendrimers (e.g., two or more coupled dendrimers) wherein each dendrimer is conjugated to one or more functional groups (e.g., therapeutic agent, imaging agent, targeting agent, triggering agent) (e.g., for specific targeting and/or therapeutic use of the dendrimer based modular platform). In some embodiments, the functional groups are conjugated to the dendrimers via a linker and/or a triggering agent. In addition, the present invention is directed to methods of synthesizing dendrimer based modular platforms, compositions comprising the dendrimer based modular platforms, as well as systems and methods utilizing the dendrimer based modular platforms (e.g., in diagnostic and/or therapeutic settings (e.g., for the delivery of therapeutics, imaging, and/or targeting agents (e.g., in disease (e.g., cancer) diagnosis and/or therapy, etc.)).
摘要:
Dendritic polymers with enhanced amplification and interior functionality are disclosed. These dendritic polymers are made by use of fast, reactive ring-opening chemistry (or other fast reactions) combined with the use of branch cell reagents in a controlled way to rapidly and precisely build dendritic structures, generation by generation, with cleaner chemistry, often single products, lower excesses of reagents, lower levels of dilution, higher capacity method, more easily scaled to commercial dimensions, new ranges of materials, and lower cost. The dendritic compositions prepared have novel internal functionality, greater stability (e.g., thermal stability and less or no reverse Michael's reaction), and reach encapsulation surface densities at lower generations. Unexpectedly, these reactions of polyfunctional branch cell reagents with polyfunctional cores do not create cross-linked materials. Such dendritic polymers are useful as demulsifiers for oil/water emulsions, wet strength agents in the manufacture of paper, proton scavengers, polymers, nanoscale monomers, calibration standards for electron microscopy, making size selective membranes, and agents for modifying viscosity in aqueous formulations such as paint. When these dendritic polymers have a carried material associated with their surface and/or interior, then these dendritic polymers have additional properties for carrying materials due to the unique characteristics of the dendritic polymer, such as for drug delivery, transfection, and diagnostics.
摘要:
Heterocycle terminated dendritic polymers. More specifically, the production of 2-pyrrolidone, 2-piperidone, 2-aza-cycloheptanone or 2-azetidinone-terminated dendritic polymers obtained by reacting precursor primary amine, (e.g., —NH2)-terminated dendritic polymers with certain functionalized methacrylate reagents to produce new and novel dendritic polymers terminated with ester substituted 2-pyrrolidone, 2-piperidone, 2 aza-cycloheptanone or 2-azetidinone groups.
摘要:
The present invention relates to novel dendrimer compounds and methods of synthesizing the same. In particular, the present invention is directed to novel polyamidoamine (PAMAM) dendrimers, novel dendrimer branching units, methods for synthesizing such novel PAMAM dendrimers and functionalized dendrimers, as well as systems and methods utilizing the dendrimers (e.g., in diagnostic and/or therapeutic settings (e.g., for the delivery of therapeutics, imaging, and/or targeting agents (e.g., in disease diagnosis and/or therapy, etc.))).