摘要:
This invention relates to a liquid crystal display device that is adaptive for being made in small size as well as shortening process time, and a fabricating method thereof. A liquid crystal display device according to an embodiment of the present invention includes an upper substrate where a common electrode is formed; a lower substrate that faces the upper substrate; a plurality of gate drive integrated circuits that supplies a gate signal to a gate line that is located on the lower substrate; a plurality of data drive integrated circuits that supplies a data signal to a data line that is located on the lower substrate; a common line that supplies a common voltage to the common electrode through the gate drive integrated circuit and the data drive integrated circuit when driving a liquid crystal; and a conductive sealant that electrically connects the common electrode to the common line in one of an area of between adjacent gate drive integrated circuits and between adjacent data drive integrated circuits.
摘要:
A method of fabricating a liquid crystal display which prevents breakage of a substrate in a thin liquid crystal display panel. The method includes forming a plurality of sealant patterns defining a liquid layer on a first substrate, a plurality of dummy patterns between the sealant patterns, and a plurality of protective patterns on crossings between the dummy patterns; bonding a second substrate to the first substrate, forming a plurality of scribing lines on a surface of either the first or second substrate; and cutting the first and second substrates along the scribing lines.
摘要:
A liquid crystal display device is provided that comprises a gate line; a first insulating film on the gate line; a data line crossing the gate line to define a pixel region, the pixel region having a transmissive area and a reflective area; a thin film transistor connected to the gate line and the data line; a pixel electrode formed in the pixel region; a second insulating film on the thin film transistor; a storage capacitor including a storage upper electrode overlapping the gate line; a transmission hole exposing at least a portion of the pixel electrode, and a reflective electrode formed in the reflective area of the pixel region, the reflective electrode connecting the pixel electrode with thin film transistor and the storage upper electrode, wherein the gate line and the pixel electrode include a first transparent conductive layer.
摘要:
A liquid crystal display device includes a first substrate, a second substrate and a liquid crystal layer between the first and second substrates. The liquid crystal display device further includes a gate line on the first substrate, a first insulation film on the gate line, a data line crossing the gate line such that the data line and the gate line define a pixel region with a transmission area and a reflection area, a thin film transistor connected to the gate line and the data line, a storage capacitor including a storage line crossing the data line and an upper storage electrode connected to the thin film transistor, a second insulation film on the thin film transistor with a transmission hole defined through the second insulation film, a reflection electrode disposed on the second insulation film in the reflection area and connected to a portion of the upper storage electrode through the transmission hole, and a pixel electrode disposed in the pixel region and connected to the reflection electrode.
摘要:
A TFT substrate having a storage capacitor with an increased capacitance and aperture ratio, and a simplified method of fabricating the same, includes gate and data lines crossing each other to define pixel areas; a gate insulating film between the gate and data lines; TFTs connected to the gate and data lines; a semiconductor pattern defining a channel of the TFTs and overlapped by the data lines; a passivation film covering the data lines and the TFTs; and at least one pixel electrode connected to a TFT and provided within a pixel hole that is arranged within a pixel area. The pixel hole is formed through the passivation film and partially through the gate insulating film. Further, a storage capacitor includes a portion of the pixel electrode that overlaps with an underlying gate line with a portion of the gate insulating film that defines the pixel hole.
摘要:
The present invention is related to a method of fabricating a liquid crystal display device which includes etching an attached substrate using an etchant to make the substrate thin and light. A plurality of main seal patterns are formed on a first substrate and auxiliary seal patterns are formed around each main seal pattern. Thereafter, a second substrate is attached to the first substrate by pressure. Then, an anti-etching material is formed around the sidewalls of the attached substrates. Due to the anti-etching material, an etchant etching the surfaces of the attached substrate does not penetrate into the interval between the first and second substrates.
摘要:
A liquid crystal display device includes a first substrate, a second substrate and a liquid crystal layer between the first and second substrates. The liquid crystal display device further includes a gate line on the first substrate, a first insulation film on the gate line, a data line crossing the gate line such that the data line and the gate line define a pixel region with a transmission area and a reflection area, a thin film transistor connected to the gate line and the data line, a storage capacitor including a storage line crossing the data line and an upper storage electrode connected to the thin film transistor, a second insulation film on the thin film transistor with a transmission hole defined through the second insulation film, a reflection electrode disposed on the second insulation film in the reflection area and connected to a portion of the upper storage electrode through the transmission hole, and a pixel electrode disposed in the pixel region and connected to the reflection electrode.
摘要:
A liquid crystal display device is provided that comprises a gate line; a first insulating film on the gate line; a data line crossing the gate line to define a pixel region, the pixel region having a transmissive area and a reflective area; a thin film transistor connected to the gate line and the data line; a pixel electrode formed in the pixel region; a second insulating film on the thin film transistor; a storage capacitor including a storage upper electrode overlapping the gate line; a transmission hole exposing at least a portion of the pixel electrode, and a reflective electrode formed in the reflective area of the pixel region, the reflective electrode connecting the pixel electrode with thin film transistor and the storage upper electrode, wherein the gate line and the pixel electrode include a first transparent conductive layer.
摘要:
A liquid crystal display device is provided that comprises a gate line; a first insulating film on the gate line; a data line crossing the gate line to define a pixel region, the pixel region having a transmissive area and a reflective area; a thin film transistor connected to the gate line and the data line; a pixel electrode formed in the pixel region; a second insulating film on the thin film transistor; a storage capacitor including a storage upper electrode overlapping the gate line; a transmission hole exposing at least a portion of the pixel electrode, and a reflective electrode formed in the reflective area of the pixel region, the reflective electrode connecting the pixel electrode with thin film transistor and the storage upper electrode, wherein the gate line and the pixel electrode include a first transparent conductive layer.
摘要:
A thin film transistor substrate and method of fabrication is presented. The thin film transistor includes gate and data lines forming a pixel area and separated by a gate insulating layer on a LCD substrate. A thin film transistor in the pixel area has a semiconductor pattern which forms a channel. A pixel electrode in the pixel area contains a transparent conductive film. A gate metal film is adjacent to a portion of transparent conductive film in the pixel area. A semiconductor passivation film is formed by exposing the semiconductor in the channel to an oxygen or nitrogen plasma. A gate pad connected with the gate line contains the transparent film in a pad section and the transparent film and the gate film in a connection area connecting the gate pad and the gate line. A data pad connected with the data line contains the transparent film.