摘要:
Provided is a time division multiplex (TDM)/wavelength division multiple access (WDMA) passive optical network (PON) device. The TDM/WDMA PON device comprises a base station terminal, a wavelength splitter, and a subscriber terminal optical transceiver. The base station terminal comprises a transmitter time-division-multiplexing and simultaneously modulating and outputting a plurality of different wavelength optical signals, an optical circulator transmitting the optical signals output from the transmitter to an optical distribution network and transmitting optical signals received from the optical distribution network to a receiver and the receiver demultiplexing wavelength division multiplexed upstream signals from the optical distribution network through the optical circulator, converting the demultiplexed upstream signals into a plurality of electrical signals, and delivering the electrical signals to an upper layer. The wavelength splitter splits the downstream signals from the base station terminal to subscriber ports corresponding to wavelengths and multiplexes the optical signals received from each of the subscriber ports to the base station terminal. The subscriber terminal-optical transceiver receives the downstream signals from the wavelength splitter and reuses the received downstream signals as optical sources for upstream signals.
摘要:
Provided is a TDMA (time division multiple access) PON (passive optical network) OLT (optical line terminal) system for a broadcast service, including packet processor determining information according to types of frames (unicast, multicast, and broadcast frames) and a switch output port using header information (an IP address of a packet header, MAC (medium access control) addresses of Ethernet frames, and the like) of data received from an external node or the ONT (optical network terminal) and attaching the information to header parts of the frames to generate second data, a switch copying the second data by a predetermined number of times according to a transmission method and transmitting the second data to a corresponding destination output port according to the identification codes, M TDMA PON MAC processors removing the identification codes added to the second data and converting the second data into TDMA PON frames, and M optical transceivers converting the TDMA PON frames into optical signals and transmitting the optical signals to an ONT.
摘要:
A time division multiplex (TDM)/wavelength division multiple access (WDMA) passive optical network (PON) device includes a base station terminal, a wavelength splitter, and a subscriber terminal optical transceiver. The base station terminal includes a transmitter, an optical circulator transmitting the optical signals output from the transmitter to an optical distribution network, and a receiver demultiplexing wavelength division multiplexed upstream signals from the optical distribution network through the optical circulator. The wavelength splitter splits the downstream signals from the base station terminal to subscriber ports corresponding to wavelengths and multiplexes the optical signals received from each of the subscriber ports to the base station terminal. The subscriber terminal optical transceiver receives the downstream signals from the wavelength splitter and reuses the received downstream signals as optical sources for upstream signals.
摘要:
Provided is a TDMA (time division multiple access) PON (passive optical network) OLT (optical line terminal) system for a broadcast service, including packet processor determining information according to types of frames (unicast, multicast, and broadcast frames) and a switch output port using header information (an IP address of a packet header, MAC (medium access control) addresses of Ethernet frames, and the like) of data received from an external node or the ONT (optical network terminal) and attaching the information to header parts of the frames to generate second data, a switch copying the second data by a predetermined number of times according to a transmission method and transmitting the second data to a corresponding destination output port according to the identification codes, M TDMA PON MAC processors removing the identification codes added to the second data and converting the second data into TDMA PON frames, and M optical transceivers converting the TDMA PON frames into optical signals and transmitting the optical signals to an ONT.
摘要:
Provided are a hybrid optical transceiver module having an optical amplifier packaged thereto for outputting a high-power optical signal to remove problems regarding narrow emission angle and optical alignment, and a passive optical network (PON) system having an improved optical network terminal (ONT) accommodation capability using the hybrid optical transceiver module. The hybrid optical transceiver module includes a first package in which an LD (laser diode) is packaged, and a second package in which SOA (semiconductor optical amplifier) and a PD (photo diode) are packaged. The first and second packages are coupled to be one package so as to output a high-power optical signal.
摘要:
Provided are high power PLC optical Tx module and PLC optical Tx/Rx module. The PLC optical Tx/Rx module is located in an OLT of a PON system. The high power PLC optical Tx/Rx module includes a photodiode, a laser diode, an SOA, an optical coupler, and a PLC platform. The photodiode converts an input optical signal into an electrical signal, and the laser diode generates an optical signal of a predetermined wavelength. The SOA amplifies the optical signal generated by the laser diode, and the optical coupler couples optical signals, outputs the coupled signal to a splitter, divides an optical signal from the slitter, and outputs the divided signals to the photodiode. The PLC platform incorporates the photodiode, the laser diode, the SOA, and the optical coupler into one package to allow an optical signal to be output with high power.
摘要:
A pluggable optical transceiver module is provided. The pluggable optical transceiver module is fitted to and removed from a receptacle having a clamp at an end in an optical communication system body and includes a housing frame having an adaptor at which a light emitting diode (LED) display unit and an optical transceiver element are installed; a rotary lever comprising a handle at one side and a pressing portion at another side so that the rotary lever rotates by a predetermined angle with respect to one side of the housing frame; and an elastic arm which is pivoted on the housing frame to be rotated by the rotary lever and includes one end contacting the pressing portion according to rotation of the rotary lever and another end coupled with or separated from the clamp of the receptacle by the rotation.
摘要:
The present invention relates to a triazanonane derivative indicated by the chemical formula 1 below, or a pharmaceutically acceptable salt thereof, and a method for preparing same, and the triazanonane derivative according to the present invention forms a complex with a metal-fluoride and displays an effect of increasing the labeling efficiency up to 78-90% when labeling F-18, thus enabling use in various radioactive medicine labeling (In the chemical formula 1, R1, R2, A. E. X, n and m are as defined in the present description.)
摘要:
The present invention relates to an integrated, composite hybrid electric device in which various devices are formed as a single unit on one flexible substrate, and a fabrication method thereof. More particularly, the present invention a hybrid electric device in which a display device, a vibration-generating (or vibration-sensing) device, and a non-volatile memory device are formed on a single flexible piezoelectric polymer substrate into a single unit by using a flexible piezoelectric polymer substrate whose both surfaces are thinly deposited with a patterned transparent oxidation electrode, and a fabrication method thereof.
摘要:
A plasma display device is provided. In the plasma display device, a plurality of scan electrodes are divided into one or more scan electrode groups, and different driving signals are applied to the scan electrode groups. More specifically, different scan bias voltages are applied to the scan electrodes during a scan period, and different signals are applied to the scan electrodes during a set-down period of a reset period. Therefore, it is possible to stabilize an address discharge in scan electrodes to which scan signals are applied late.